The Renin-Angiotensin System in the Breast and in Breast Cancer.

Gavin P Vinson, Stewart Barker, and John R Puddefoot.
School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS.

ABSTRACT
Much evidence now suggests that angiotensin II has roles in normal functions of the breast that may be altered or attenuated in cancer. Both angiotensin type 1 (AT1) and type 2 (AT2) receptors are present, particularly in the secretory epithelium. Additionally, the elements of a tissue renin-angiotensin system, angiotensinogen, prorenin and angiotensin converting enzyme (ACE), are all also present, and distributed in different cell types in a manner suggesting a close relationship with sites of angiotensin II activity. These findings are consistent with the concept that stromal elements and myoepithelium are instrumental in maintaining normal epithelial structure and function. In disease, this system becomes disrupted, particularly in invasive carcinoma. Both AT1 and AT2 receptors are present in tumours, and may be upregulated in some. Experimentally, angiotensin II, acting via the AT1 receptor, increases tumour cell proliferation, and angiogenesis, both these are inhibited by blocking its production or function. Epidemiological evidence on the effect of expression levels of ACE or the distribution of ACE or AT1 receptor variants in many types of cancer, gives indirect support to these concepts. It is possible that there is a case for the therapeutic use of high doses of ACE inhibitors and AT1 receptor blockers in breast cancer, as there may be for AT2 receptor agonists, though this awaits full investigation. Attention is drawn to the possibility of blocking specific AT1 mediated intracellular signalling pathways, for example by AT1 directed antibodies, which exploit the possibility that the extracellular N-terminus of the AT1 receptor may have previously unsuspected signalling roles.
INTRODUCTION

In the treatment of breast cancer, the various ways of removing the effects of oestrogen, first by surgery, then later by the use of drugs that either block the actions of oestrogens or prevent their formation, such as tamoxifen and the aromatase inhibitors, have been hugely successful (Barnes, et al. 2004; Howell and Dowsett 2004; Jones and Buzdar 2004). Indeed the critical association between oestrogens, oestrogen receptor (ER) expression and cancer is so entrenched in relation to the breast that the terms “receptor positive” or “receptor negative” tumours are a widely accepted shorthand for ER alone (eg. (Yaren, et al. 2007))

This long established connection between oestrogen and breast tumours preceded the more general realisation that the misdirection of normal growth regulatory processes underlies many cancers. Subversion of growth factor receptor structure and function is a well understood mechanism of oncogene action (Ross, et al. 2004; Bianco, et al. 2005; Hynes and Lane 2005; Pal and Pegram 2005; Zhang, et al. 2005). In the breast, mechanisms that regulate tissue and tumour growth are multifactorial, and many hormones, growth factors, and intracellular signalling pathways are involved (Haagensen 1986; Dickson, et al. 1992; Hansen and Bissell 2000; Tucker 2000; Pollard 2001; Goffin, et al. 2002; Singer, et al. 2003; Lamote, et al. 2004; Nicolini, et al. 2006; Cheng, et al. 2008). Several of these have been targeted for drug development, particularly in tumours that either do not contain ER, or are unresponsive to antioestrogens.

The systemic renin-angiotensin system (RAS) and the generation of angiotensin II (Fig 1) has as major roles the regulation of blood pressure, and the adrenal secretion of aldosterone (Mulrow 1999; de Gasparo, et al. 2000; Kaschina and Unger 2003). The actions of angiotensin II in the regulation of vasoconstriction have even been used to facilitate better accessibility of chemotherapeutic drugs to tumours (Noguchi, et al. 1988; Goldberg, et al. 1990; Yamaue, et al. 1990; Anderson, et al. 1991). Angiotensins III and IV and angiotensin 1-7 may also be produced, and though they may act through the same two receptor types as angiotensin II, i.e. angiotensin receptors types 1 and 2 (AT1 and AT2) though with varying effectiveness (de Gasparo et al. 2000; Le, et al. 2002), angiotensin IV also acts through an insulin regulated transmembrane enzyme designated
the AT4 receptor (Thomas and Mendelsohn 2003; Chai, et al. 2004), and angiotensin 1-7 primarily through MasR, the product of the Mas oncogene (Neo, et al. 2010).

Angiotensin receptors AT1 and AT2 are widespread, and uniformly occur in secretory epithelia. In addition to its functions in the maintenance of blood pressure, and hypertension, angiotensin II also has well studied actions on electrolyte and water transport in the kidney, and elsewhere, including across other epithelial surfaces (Wong, et al. 1990; Norris, et al. 1991; Lees, et al. 1993; Quan and Baum 1996; Wang and Giebisch 1996; Leung, et al. 1997; Mahmood, et al. 2002) where it also affects ciliary beat frequency (Saridogan, et al. 1996a).

Accordingly, it is appropriate to consider angiotensin II among the growth promoting and tissue modelling factors that may be subverted in cancer.

ANGIOTENSIN IN CANCER

Epidemiological evidence

Indirect patient evidence supports the view of a role in cancer (Deshayes and Nahmias 2005). Thus the AT1 receptor has been reported to be up-regulated in various hyperplastic and cancer tissues (De Paepe et al. 2001), though not according to all reports (Dinh, et al. 2002). Additionally, polymorphisms in angiotensinogen, AT1 receptors, and angiotensin converting enzyme (ACE) have all been associated with breast cancer risk (Koh, et al. 2003; Koh, et al. 2005; Arima, et al. 2006; Gonzalez-Zuloeta Ladd et al. 2007; Yaren et al. 2007; van der Knaap, et al. 2008; Mendizabal-Ruiz, et al. 2011). Such polymorphisms have recently been extensively reviewed and discussed (Xi, et al. 2011). One widely studied polymorphism is a 287 bp Alu insertion/deletion (I/D) polymorphism in intron 16 of the ACE gene that apparently accounts for 50% of the variability in circulating ACE levels (Rigat, et al. 1990). Though earlier studies suggested that this had no strong predictive value (Haiman, et al. 2003), more recently the DD phenotype has been associated with increased risk and poor prognosis in breast cancer (Gonzalez-Zuloeta Ladd, et al. 2005; Yaren et al. 2007; van der Knaap et al. 2008; Rosenthal and Gavras 2009). Interestingly, the same ACE polymorphism may also increase risk in benign prostatic hyperplasia (BHP) and prostate cancer, whereas the A1166C substitution in the AT1 receptor increases BHP risk alone (Sierra Diaz, et al. 2009). Conversely the C allele carriers have reduced breast cancer risk (Mendizabal-Ruiz et al. 2011). Three further AT1 receptor substitutions (A-168G, C-535T and T-825A) have also been associated with reduced breast cancer risk (Koh et al. 2005).

More direct patient evidence has been elusive. The first report of the potential utility of ACE inhibitors in preventing cancer development was that of (Lever, et al. 1998) who surveyed data from patients receiving these medications for other reasons, but their findings were not confirmed by others (Meier, et al. 2000; Li, et al. 2003; Gonzalez-Perez, et al. 2004; Ronquist, et al. 2004; Fryzek, et al. 2006; Rosenthal and Gavras 2009), nor, in similar patient studies was the use of angiotensin II antagonists in any way linked with the disease (Fryzek et al. 2006; Teo 2011). One report suggests that candesartan, an AT1 receptor blocker, when used at a similar dose to that used in patients for other reasons, has beneficial effects in prostate cancer, in that circulating prostate specific antigen is reduced (Uemura, et al. 2005a) although this study does not appear to have been repeated. Others have even suggested a modest increase in cancers of all types in
patients receiving angiotensin-receptor blockers (Sipahi, et al. 2010), though this too has been contested (Volpe, et al. 2011). The failure to make such associations may depend on variations in gene expression, and patients with low ACE expression phenotype may have poorer breast cancer outcomes than high ACE-expressing subjects (Yaren et al. 2007), though again there appear to be conflicting findings (Yaren et al. 2007; van der Knaap et al. 2008). Nevertheless, renin-angiotensin system inhibiting drugs may benefit high ACE expressing patients but not others (van der Knaap et al. 2008). It is possible that anti-RAS drugs are more effective in combination. In patients with advanced pancreatic cancer receiving the nucleoside analogue gemcitabine, lower doses of losartan and other RAS inhibitors were effective in improving outcomes (Nakai, et al. 2010). One way in which this might occur has been described by (Diop-Frimpong, et al. 2011). Drawing on previous work (Stylianopoulos, et al. 2010) demonstrating the effect of collagen fibre networks, such as occur in connective tissue, on the diffusion of drugs, (Diop-Frimpong et al. 2011) demonstrated that losartan blocks collagen I production by breast carcinoma associated fibroblasts, potentially facilitating drug accessibility.

In contrast to the patient data, both ACE inhibitors and AT1 receptor antagonists are effective in vitro: they inhibit growth in many different types of tumour cells, including breast cancer cells (Chen, et al. 1991; Reddy, et al. 1995; Small, et al. 1997; Rivera, et al. 2001; Uemura, et al. 2008; Inigo, et al. 2009; Ino, et al. 2011). In experimental animals in vivo on the other hand, for example in xenografts of SKOV-3 ovarian tumour in mice or of C6 rat glioma cell tumours in rats, much higher doses, of candesartan and losartan respectively, were needed to demonstrate tumour regression than those generally used in patients (Rivera et al. 2001; Suganuma et al. 2005). It is perhaps because high doses are required when these drugs are used singly that the epidemiological studies on patients receiving antihypertensive treatment for cardiovascular disease show no benefit in incidence of cancer.

The discovery of the zinc metalloprotease ACE2 introduced a new aspect of angiotensin signaling (Donoghue, et al. 2000). ACE2 preferentially hydrolyses angiotensin I to angiotensin 1-9, and angiotensin II to angiotensin 1-7 (Fleming, et al. 2006) (see Fig 1). Angiotensin 1-7 has properties different from those of angiotensin II, and may oppose angiotensin II functions. In particular, it is antiproliferative and reduces

Angiogenesis

Additionally, although both ACE inhibitors and AT1 receptor antagonists may be effective on animal tumours in vivo, the results are more ambiguous than in vitro, and at least in part could be due to their anti-angiogenic actions (Volpert, et al. 1996; Fujimoto et al. 2001; Fujita, et al. 2002; Yoshiji, et al. 2004; Fujita, et al. 2005; Kosaka, et al. 2007; De Paepe 2009; Miyajima, et al. 2009). The important part played by angiogenesis in the development of cancer has frequently been emphasised. There is considerable evidence that cancer growth and spread is angiogenesis-dependent, that tumour cells themselves can produce angiogenic factors, and that inhibition of angiogenesis can limit tumour growth (Weidner 2004; Sharma, et al. 2005; Clapp, et al. 2009), including in the breast (Heffelfinger 2007; Groves, et al. 2011). It is difficult to assess the importance of this process in relation to angiotensin II’s direct effects on tumour growth and cell proliferation. Certainly angiotensin II is involved in angiogenesis. Several in vitro studies have shown that VEGF expression is stimulated by angiotensin II or inhibited by ACE or angiotensin blockers in tumour cells, including squamous cell (Yasumatsu, et al. 2004) ovarian (Suganuma et al. 2005), prostate (Kosaka et al. 2007), and rat pituitary tumour cells (Ptasinska-Wnuk, et al. 2007). Similar conclusions have been reached from in vivo studies. Thus AT1 receptor expression and angiogenesis was correlated in ovarian tumours, and in astrocytomas (Ino, et al. 2006; Arrieta, et al. 2008). Angiotensin II supported vascular endothelial growth factor (VEGF)s production and angiogenesis in xenografts of ovarian cancer cells (Suganuma et al. 2005) and AT1 receptor blockade inhibited both of these actions in xenografts of ovarian and gastric tumour cells (Suganuma et al. 2005; Huang, et al. 2008). AT1 receptor blockade also inhibited angiogenesis in murine Lewis lung tumours (Imai, et al. 2007) and through this means enhanced the effectiveness of radiation treatment in murine melanoma (Ohnuma, et al. 2009; Otake, et al. 2009) and in murine renal tumours (Miyajima et al. 2009). However, in *in-vivo* studies in which S-180 murine sarcoma cell tumours were developed in AT1a receptor null mice, angiogenesis, along with VEGF expression, was both reduced and
partially refractory to AT1 receptor blockade when compared with normal tissue. Hence host angiotensin II activity is instrumental in supporting angiogenesis in host stromal cells in addition to any effect it has on the cancer cells themselves (Fujita et al. 2002; Fujita et al. 2005; Imai et al. 2007).

Actions of angiotensin II on breast cancer cells.

As in other tissues, angiotensin II acts on the AT1 receptor to promote cell proliferation in breast cancer cells (Muscella, et al. 2002). The AT1-mediated signalling involves the protein kinase-C (PKC, zeta and iota)/ Ca$^{2+}$/ inositol trisphosphate (IP3) pathways, and also extracellular signal related kinase (ERK) activation (Greco, et al. 2002a; Greco, et al. 2002b; Greco, et al. 2003; Muscella, et al. 2003; Muscella, et al. 2005). Angiotensin II also activates Na+/K+ ATPase (Muscella et al. 2002; Muscella et al. 2005).

Angiotensin II has further possible roles, involved in cell adhesion and invasion. Specifically, again acting via the AT1 receptor, it inhibits expression of integrin subtypes α3 and β1 and also binding to and invasion through components of the extracellular matrix. In contrast to its actions on proliferation, these effects of angiotensin II may be regarded as potentially beneficial. (Puddefoot, et al. 2006). Consequently, RAS blockade may not always be entirely appropriate therapy in cancer, perhaps also explaining its apparent lack of benefit in patients. Conflicting evidence on the efficacy of anti-RAS treatment has also been discussed in the context of cardiovascular disease (Magy, et al. 2005).

Angiotensin II, ER and growth factors

Because of the well known importance of ER and growth factors and their interrelationship in breast cancer, it is relevant to examine their interactions with the RAS. That between the RAS and ER is complex. Depending on the tissue, oestrogen has varyingly been reported both to downregulate AT1 receptors: in rat pituitary and hypothalamus (Seltzer, et al. 1992; Kisley, et al. 1999) and dog kidney, myocardium, liver and adrenal (Owonikoko, et al. 2004) see also (Fischer, et al. 2002), but to upregulate it at other sites, including rat kidney (Baiardi, et al. 2005), and sheep uterine artery endothelium (Sullivan, et al. 2005). Consistent with RAS upregulation by oestrogen, intensity of AT1 receptor staining is most intense in the periovulatory period
in human fallopian tube and uterine epithelia (Saridogan, et al. 1996a; Saridogan, et al. 1996b) and the AT2 receptor is also high during the proliferative phase in human myometrium (Pucell, et al. 1987; Mancina, et al. 1996), as it is in the rat ovary (Pucell et al. 1987; Mancina et al. 1996). However, such changes do not necessarily reflect the functions of the RAS as a whole and other RAS components may respond independently, for example, renin and ACE activity are reduced in various tissues by oestrogen (Fischer et al. 2002), though angiotensinogen is increased (Gordon, et al. 1992; Klett, et al. 1993; Fischer et al. 2002). Oestrogen stimulates plasma renin activity (PRA) and RAS activity in sheep (Magness, et al. 1993), though in women high PRA is associated with the luteal phase (Sealey, et al. 1994; Chapman, et al. 1997; Chidambaram, et al. 2002).

In breast duct cancer cells, angiotensin II treatment in vitro reduces ER and increases PR (Small et al. 1997)

The relationship between ER and AT1 is thus incompletely resolved. It may be that angiotensin II signalling is more significant in ER negative breast tumours (Herr, et al. 2008), in which a role has been postulated for AT1 receptors in the (non-genomic) response to oestrogen (Lim, et al. 2006), though there is a subset of ER positive (and ERBB2-negative) tumours that shows marked overexpression of AT1 receptors (Rhodes, et al. 2009). This appears to contrast with vascular smooth muscle cells in which the ER blocker raloxifene (in the presence of oestradiol) inhibited angiotensin II-stimulated proliferation (Wang, et al. 2007).

Angiotensin receptor signalling also interacts with growth factors in breast cancer cells. Thus ERKs are activated by angiotensin II directly via PKC and indirectly via EGFR mediated PI3-kinase/Akt/mTOR/p70S6K1 signalling pathways (Greco et al. 2002b; Greco et al. 2003; Chiu, et al. 2005; Han, et al. 2007). In more detail, the AT1 receptor, linked to Gq/11, signals both by Ca\(^2+\)/inositol trisphosphate and diacylglycerol linked events, and also by tyrosine kinase activation, including via epidermal growth factor receptor (EGFR) linked phosphatidylinositol-3 kinase and Akt signaling, with subsequent activation of extracellular signal-related kinases 1 and 2 (ERK1 and ERK2). (Greco et al. 2003; Shah, et al. 2004; Han et al. 2007; Kim, et al. 2009): such EGFR activation is at least in part mediated via angiotensin II stimulated metalloproteinase activity (Liebmann 2011; Smith, et al. 2011) (see below). There is extensive cross talk
with other receptors, including insulin and growth factor signalling pathways (Shah, et al. 2006; Redondo, et al. 2007; Escano, et al. 2008; Muscogiuri, et al. 2008; Olivares-Reyes, et al. 2009; Arellano-Plancarte, et al. 2010). Conversely, the AT2 receptor is thought to activate phosphatase activity, and to block AT1 receptor mediated intracellular signalling events, including phospholipase activation and the phosphorylation of signaling components. These pathways have been extensively discussed elsewhere (de Gasparo et al. 2000; de Gasparo 2002; Kaschina and Unger 2003; Deshayes and Nahmias 2005; Louis, et al. 2010; Zhao, et al. 2010).

THE LOCAL RAS IN THE BREAST.

Tissue remodelling and matrix metalloproteinases (MMPs)

In the normal cycle of events in the breast, the ductal system, which begins to develop in puberty, stabilises in the adult, but proliferates extensively during pregnancy to enable production of a high level of secretory activity during lactation. After lactation ceases, the ducts undergo apoptotic involution (Fig 2) (Wiseman and Werb 2002; Boutinaud, et al. 2004; Green and Streuli 2004). Because of the relationship between the stage of the cycle and the incidence of metaplastic change (Villadsen 2005; Russo, et al. 2006) postulated that there are at least two types, or a hierarchy, of stem cells. The whole process does not involve the ducts alone, and stromal cells and their products, including growth factors and integrins are also strongly implicated (Chrenek, et al. 2001; Pollard 2001; Wiseman and Werb 2002; Barcellos-Hoff and Medina 2005; Zechmann, et al. 2007). Because of its sites of origin, described below, and the location of its receptors, it is appropriate to consider that angiotensin II is among these, and that, perhaps acting through both receptor types, it is instrumental in both proliferative and apoptotic phases of the normal cycle.

The breast cycle (Fig 2) and its sequence of development and resorption reflects, among other things, synthesis and proteolysis of proteins of the extracellular matrix and the basement membrane, such as collagen, in a balanced manner (Morini, et al. 2000; Sun, et al. 2006). Hydrolysis of extracellular matrix proteins is catalysed at the basement membrane by the zinc- dependent matrix metalloproteinases (MMPs) present in stromal and secretory cells of normal and diseased tissue (Werb, et al. 1996; Bodey, et al. 2001)
Accordingly these enzymes are also involved in the invasive process (Ambili, et al. 1998; Rudolph-Owen and Matrisian 1998) and high MMP levels are associated with poor outcomes (Duffy, et al. 2000). Because epithelial cells depend on the functions of the basement membrane and their constituents, protein breakdown contributes to epithelial dysfunction. In many tissues angiotensin II plays a key part in such tissue remodeling, and it affects both MMP activity and collagen synthesis (Gack, et al. 1994; Ford, et al. 1999; Dzau 2001; Galis and Khatri 2002; Shah et al. 2004; Chiu et al. 2005; Yang, et al. 2005; Karakiulakis, et al. 2006; Kim, et al. 2007). Since too MMPs are located in myoepithelial cells, like prorenin (see below), it is clear that locally produced angiotensin II may have such a role in the breast.

All of the functions of angiotensin II so far described acquire an additional perspective in the light of our understanding of the tissue-based RAS. This is because the significant factor in both normal function and in disease may not be the angiotensin II in the blood, but that which is locally produced, within the tissue.

These tissue RASs may be perturbed in cancer. For example, in a mouse model of colorectal cancer metastases, ACE expression was increased (though ACE2 was decreased) in tumour-bearing livers, as well as in the tumours themselves. Tumour volume was reduced by the ACE inhibitor captopril. Liver angiotensinogen was unaffected by the tumours, and decreased in captopril treatment, whereas ACE in both liver and tumour tissues was further increased. AT1 receptor expression was elevated by tumour induction, and reduced by captopril, MasR, a putative receptor for angiotensin 1-7, was increased by captopril (Neo et al. 2010). The possibility that angiotensin III may
have a specific role has also been suggested in studies on rats with N-methyl-nitrosurea induced breast tumours, in which soluble and membrane bound aspartyl and glutamyl aminopeptidase activites are increased whereas soluble aminopeptidase N and B activities are decreased, both of which potentially increase angiotensin III production, with reduced angiotensins II and IV (del Pilar Carrera, et al. 2010).

Localisation of RAS components

In studies on the sites of (pro)renin gene transcription, (pro)renin mRNA was found in most of the breast samples examined, invariably in close proximity to the ductal epithelium, but not within the epithelium itself. Prorenin mRNA was abundant in the stroma immediately adjacent to the ducts, and in myoepithelial cells in normal tissue, and in early cancer stages but tended to be from both sites in more advanced disease, paralleling the partial loss of AT1 receptors (Tahmasebi, et al. 1998) (Fig 3). Confirmation of these data, and evidence for other RAS components was obtained using quantitative RT–PCR and the presence of RNA coding for angiotensinogen, prorenin, angiotensin converting enzyme (ACE), and both AT1 and AT2 receptors was demonstrated in normal and diseased breast tissues, supporting the hypothesis that a tissue RAS is present in the breast. As in the in situ-hybridisation data (Tahmasebi et al. 1998), there was significantly less (pro)renin mRNA in carcinoma than in normal tissue, and indeed ACE and angiotensinogen mRNAs were also reduced in carcinoma compared with in normal tissue (Tahmasebi, et al. 2006). This reflects the earlier finding that AT1 receptors are reduced in advanced tumours.

Messenger RNA coding for (pro)renin was distributed between myoepithelium and, most extensively in fibroblasts and connective tissue close to the ducts. Conversely, prorenin protein itself was mostly present in myoepithelial cells, and absent from the connective tissue. Of course this distribution could represent differences in mRNA translation between the two cell types, but a rather different picture emerges in cancer. Although the distribution of prorenin and its mRNA in ductal and in lobular carcinoma in situ were similar to normal, in more advanced conditions, as the myoepithelium was lost, prorenin protein was only sparsely present in epithelium, but it was located in fibroblasts. Here, though always present, it appeared to decrease in amount as malignancy advanced (Tahmasebi et al. 1998) (Fig 3). Two possibilities present themselves, one is that the
prorenin mRNA that is ever present in breast fibroblasts is translated only in cancer. Alternatively it is always translated, even in normal tissue, but the prorenin formed is normally transported elsewhere, to the myoepithelium or to the epithelium (though this latter is not frequently observed). Whatever the explanation, it is evidence that the functions of the breast RAS may be greatly perturbed in cancer. Similar processes may well occur on other types of cancer, for example in the pancreas (Lau and Leung 2011).

There is a difficulty with testing this concept of an entirely localised RAS in any tissue - what can in situ hybridisation or immunocytochemistry reveal about the state of activation of any of the components? Prorenin provides a key example here: the methods used in the papers cited above do not distinguish between the cleaved or activated forms. The primary mechanism for prorenin activation has been considered to be through cleavage by prohormone convertases (Benjannet, et al. 1992), which may be highly expressed in cancer, including breast tumours, and this is associated with greater oestrogen dependency (Cheng, et al. 1997; Cheng, et al. 2001). Of course, prohormone convertases may be involved in tumorigenic process that do not involve either prorenin or angiotensin II (Siegfried, et al. 2003; Scamuffa, et al. 2008). Alternatively, the discovery of a specific prorenin receptor (PRR) that binds prorenin and activates intracellular signalling pathways, while at the same time activating its enzymic activity in the absence of cleavage opens new possibilities (Nguyen and Contrepas 2008; Nguyen). These and related questions of activation of the breast RAS will need to be addressed in future.

Like the AT1 receptor, ACE is present in the secretory epithelium of the normal breast, and also in disease (Tahmasebi et al. 2006), suggesting that angiotensin II may be formed directly in the cells on which it acts. However, in cancer the overall loss and changes in the distribution of prorenin described above may mean that as the disease progresses, neither substrate for the enzyme nor ligand for the receptor remain available. Malignancy is thus correlated with the deregulation of RAS function.

These findings, and this proposed mechanism have considerable resonance with other authors’ concepts of the role of the stromal and myoepithelial interaction with the secretory epithelium and with cancer. Kalluri and Weinberg have proposed that one class of epithelial-stromal transformations (SMT), which they call Type 3 SMT (to distinguish from implantation and wound-healing forms, Types 1 and 2), is characteristic of the
transformation of polarised, and highly differentiated epithelial cells into mesenchymal cells. Such cells secrete extracellular matrix components and are highly mobile and invasive, though there is a reverse transformation (MET) at sites of metastatic colonisation (Kalluri 2009; Kalluri and Weinberg 2009). SMTs, of whatever type, are initiated as the epithelial cells invade through the basement membrane. A number of factors are thought to be involved, including IGF, TGF-β, PDGF, integrins and the signalling pathways they evoke, with all of which AT1 and AT2 receptors may interact.

So what retains epithelia in their normal functional state? Here the focus is on myoepithelial cells. These too are now known to be important in cancer progression. First rather overlooked, since they only infrequently produce tumour cells, they are now thought to be natural tumour suppressors, because of their role in maintaining epithelial cell polarity and cell cycle progression, and inhibiting cell migration and invasion (Lakhani and O'Hare 2001; Polyak and Hu 2005). This has been postulated to be due to the secretion of proteinase and angiogenic inhibitors (Barsky and Karlin 2005). Additionally, as well as inflammatory cells, fibroblasts have also been thought to be the source of factors affecting tumour development (Tlsty and Coussens 2006). These concepts received direct experimental support when MCF7 breast cancer cells were grown in vitro in an environment of extracellular matrices of type 1 collagen, or reconstituted basement membrane proteins, together with human fibroblasts. Surviving cells in the presence of collagen organised into clusters, while the further addition of basement membrane proteins induced MCF7 cell polarisation and the formation of lumina, and fibroblasts induced the formation of elongated structures (Krause, et al. 2010). Furthermore, differences in gene expression between core biopsies of breast tumours with varying degrees of stromal content were taken to indicate the influence of the stroma (Cleator, et al. 2006). So the stromal and myoepithelial localisation of RAS components strongly suggests that angiotensin II may have an important, possibly crucial role in this context.

IMPLICATIONS FOR THERAPY.

One way in which beneficial advances have been made despite initially
discouraging data, has been to identify subsets of patients who may benefit where others do not. A key example here is in the identification of a sub group of breast tumours that overexpress the ERBB2 (HER2) tyrosine kinase receptor and are thus sensitive to the monoclonal antibody trastuzumab (Nahta, et al. 2006; Nahta and Esteva 2007). More and more it becomes clear that patient profiling in this way yields benefit, and this may well be true of the RAS in breast. It is known that a significant subset of breast tumours overexpress the AT1 receptor, and although there are various mechanisms for this, one way may be that AT1 receptor expression is directly controlled by ER, leading to a subset of ER positive, ERBB2 negative tumours that overexpress AT1 receptor (Ateeq, et al. 2009; Rhodes et al. 2009).

Because of the possibility of both beneficial and disadvantageous effects of AT1 receptor inhibition, it is worth exploring whether means exist to selectively inhibit individual signalling events. This possibility has been discussed in a recent review, in which the signalling roles of individual domains of the receptor were explored, though the possibility that the extra-cellular N-terminal domain might be involved was not considered (Aplin, et al. 2009). There may however be good reasons to consider the N-terminus in this light, since there appear to be ligand binding or signalling determinants in this region (Hjorth, et al. 1994; Oliveira, et al. 2007), and a particular role for Arg23 has been identified (Santos, et al. 2004).

In this respect, the activity of monoclonal antibody R6313/G2, directed against a sequence in the N-terminal domain of the AT1 receptor has provided further information, since it appears to enhance some signalling pathways while inhibiting others. Though not affecting angiotensin II binding to the receptor (Barker, et al. 1993), the antibody directly stimulates aldosterone secretion via the IP3 pathway in rat glomerulosa cells in vitro, though blocking PKC activation, apparently associated with interrupted receptor internalization (Kapas, et al. 1994; Vinson, et al. 1994). In other studies on rat vascular smooth muscle cells, both basal and angiotensin-stimulated tritiated thymidine incorporation into rat arterial smooth muscle cells was inhibited by 6313/G2, inducing a transient increase in intracellular calcium in cultured rat arterial smooth muscle cells, but reducing PKC and MAPK signal transduction (Xiao, et al. 2008). A short chain fragment variable of this antibody also blocked AT1 receptor-mediated caspase-3/7 inhibition in
breast cancer cells, and dose dependently gave significant tumour regression in breast cell xenografts *in vivo*. These data support the view that differential inhibition of angiotensin II stimulated signalling pathways may be achieved in this way (Redondo-Muller, et al. 2008).

CONCLUSIONS

There can now be no doubt that the renin-angiotensin system is involved both in the normal physiology (and perhaps development) of the breast, and also in the ontogeny of breast carcinoma, and possibly other cancers. There is strong evidence that blocking the pathways of AT1 receptor-mediated angiotensin signalling can have beneficial effects. However, in view of the multiple actions of angiotensin II on breast cancer cells, some of which themselves may be considered to be beneficial, this is not without potential cost. In identifying the AT1 receptor as a new target for breast cancer therapy, development of agents that more precisely discriminate between individual signaling pathways is an important goal. The monoclonal antibody 6313/G2 and its recombinant counterpart demonstrate that this kind of approach may be entirely feasible.

Conflict of Interest

Queen Mary University of London owns IP related to antibodies against the AT1 receptor, currently licensed to Oncobiopharm Ltd. The authors have received no funding from, and have no financial interest in this company. There are no other potential conflicts of interest.

Funding.

No funding was received from any source for this work.
Legends to Figs.

Fig 1 The renin-angiotensin system. In normal tissue, and in cancer, the major active hormone is usually considered to be angiotensin II, though angiotensins III and IV, and angiotensin 1-7 have also been implicated. See text.

Fig 2. The breast cycle: note particularly extensive duct and gland development during pregnancy and lactation, followed by apoptotic involution when lactation ceases. (cf. (Wiseman and Werb 2002; Boutinaud et al. 2004; Green and Streuli 2004). Drawing by Bronwen Vinson. Reproduced from (Vinson, et al. 2007) With kind permission of Springer Science and Business Media..

Fig 3 Angiotensin II receptors, and ACE are both present in epithelial cells and in cancer cells. Sites of (pro)renin mRNA transcription (dark shading) are shown in (i) normal breast ducts, (ii) intraductal carcinoma in situ and (iii) invasive carcinoma. The myoepithelial source of (pro)renin transcription is lost as cancer develops. Since in normal tissue this lies in close proximity to the epithelium, the configuration strongly suggests that angiotensin II can be produced at its epithelial site of action. This tightly linked system is lost in cancer, suggesting that the AT1 and AT2 receptor-containing carcinoma eventually becomes deprived of its source of angiotensin II. From (Tahmasebi et al. 1998; Tahmasebi et al. 2006). e = epithelium, m = myoepithelium, f = fibroblast, t = tumour, s = stroma. Drawing by Bronwen Vinson. Reproduced from (Vinson et al. 2007) with kind permission of Springer Science and Business Media..
REFERENCES

Bader M 2002 Role of the local Renin-Angiotensin system in cardiac damage: a minireview focussing on transgenic animal models. J Mol Cell Cardiol 34 1455-1462.

Barker S, Marchant W, Ho MM, Puddefoot JR, Hinson JP, Clark AJL & Vinson GP 1993 A monoclonal antibody to a conserved sequence in the extracellular domain recognizes the angiotensin II AT1 receptor in mammalian tissues. J.mol.endocr. 11 241-245.

Benjannet S, Reudellhuber T, Mercure C, Rondeau N, Chretien M & Seidah NG 1992 Proprotein conversion is determined by a multiplicity of factors including convertase

Carl-McGrath S, Ebert MP, Lendeckel U & Rocken C 2007 Expression of the Local Angiotensin II System in Gastric Cancer May Facilitate Lymphatic Invasion and Nodal Spread. *Cancer Biol Ther* **6**.

de Gasparo M 2002 AT(1) and AT(2) angiotensin II receptors: Key features. *Drugs* **62** 1-10.

Han HJ, Han JY, Heo JS, Lee SH, Lee MY & Kim YH 2007 ANG II-stimulated DNA synthesis is mediated by ANG II receptor-dependent Ca(2+)/PKC as well as EGF receptor-dependent PI3K/Akt/mTOR/p70S6K1 signal pathways in mouse embryonic stem cells. *J Cell Physiol* **211** 618-629.

Kapas S, Hinson JP, Puddefoot JR, Ho MM & Vinson GP 1994 Internalization of the type-I angiotensin-II receptor (AT1) is required for protein-kinase-C activation but not for inositol trisphosphate release in the angiotensin-II stimulated rat adrenal zona glomerulosa cell. *Biochemical and Biophysical Research Communications* **204** 1292-1298.

Miyajima A, Kikuchi E, Kosaka T & Oya M 2009 Angiotensin II Type 1 Receptor Antagonist as an Angiogenic Inhibitor in Urogenital Cancer. Rev Recent Clin Trials 4 75-78.

Rivera E, Arrieta O, Guevara P, Duarte-Rojo A & Sotelo J 2001 AT1 receptor is present in glioma cells; its blockage reduces the growth of rat glioma. British Journal of Cancer 85 1396-1399.

Santos EL, Pesquero JB, Oliveira L, Paiva AC & Costa-Neto CM 2004 Mutagenesis of the AT1 receptor reveals different binding modes of angiotensin II and [Sar1]-angiotensin II. *Regul Pept* 119 183-188.

phosphorylation in specific cell types: Role of heparin-binding epidermal growth factor. *Molecular Endocrinology* **18** 2035-2048.

Villadsen R 2005 In search of a stem cell hierarchy in the human breast and its relevance to breast cancer evolution. Apmis 113 903-921.

Vinson GP, Ho MM, Puddefoot JR, Teja R & Barker S 1994 Internalisation of the type I angiotensin II receptor (AT1) and angiotensin II function in the rat adrenal zona glomerulosa cell. Journal of Endocrinology 141 R5-R9.

Angiotensinogen
Asp-Arg-Val-Tyr-Ile-His-Pro-Phe-His-Leu-Leu-Val-Tyr-Ser-globulin

\[\xrightarrow{\text{Renin}} \xrightarrow{\text{Prorenin}} \xrightarrow{\text{Convertase}} \]

Angiotensin I
Asp-Arg-Val-Tyr-Ile-His-Pro-Phe-His-Leu

\[\xrightarrow{\text{Angiotensin converting enzyme (ACE)}} \]

Angiotensin II
Asp-Arg-Val-Tyr-Ile-His-Pro-Phe

\[\xrightarrow{\text{Peptidases, ACE2}} \]

Angiotensin III
Arg-Val-Tyr-Ile-His-Pro-Phe

Angiotensin IV
Val-Tyr-Ile-His-Pro-Phe
Fig 2