DIABETES AND CANCER

Paolo Vigneri1, Francesco Frasca2, Laura Sciacca2, Giuseppe Pandini2 and Riccardo Vigneri2

1Department of Biomedical Sciences, Section of General Pathology and 2Department of Internal and Specialistic Medicine, Section of Endocrinology, University of Catania, Garibaldi-Nesima Hospital, 95122 Catania, Italy

Correspondence should be addressed to R. Vigneri; E-mail: vigneri@unict.it
Abstract

Diabetes and Cancer are two heterogeneous, multifactorial, severe and chronic diseases. Because of their frequency, reciprocal influences, even if minor, may have a major impact. Epidemiological studies clearly indicate that the risk for several types of cancer (including pancreas, liver, breast, colorectal, urinary tract and female reproductive organs) is increased in diabetic patients. Mortality is also moderately increased.

Several confounding factors, having general or site-specific relevance, make it difficult to accurately assess cancer risk in diabetic patients. These factors include diabetes duration, varying levels of metabolic control, different drugs used for therapy and the possible presence of chronic complications. Hyperinsulinemia most likely favors cancer in diabetic patients as insulin is a growth factor with preeminent metabolic but also mitogenic effects and its action in malignant cells is favored by mechanisms acting both at the receptor and post-receptor level. Obesity, hyperglycemia and increased oxidative stress may also contribute to increased cancer risk in diabetes.

While antidiabetic drugs have a minor influence on cancer risk (except perhaps the biguanide metformin that apparently reduces the risk), drugs used to treat cancer may either cause diabetes or worsen a pre-existing diabetes. In addition to the well-known diabetogenic effect of glucocorticoids and antiandrogens, an increasing number of targeted anti-cancer molecules may interfere with glucose metabolism acting at different levels on the signaling substrates shared by IGF-I and insulin receptors.

In conclusion, diabetes and cancer have a complex relationship that requires more clinical attention and better-designed studies.
Introduction

Diabetes mellitus (DM) is a serious and growing health problem worldwide and is associated with severe acute and chronic complications that negatively influence both quality of life and survival of the affected individuals. Today 250 million people live with diabetes globally, with this figure expected to reach 380 million within 20 years. Therefore, if diabetes is associated even with a small increase in the risk for cancer, this may have important consequences at the population level.

The association between cancer and diabetes has been investigated extensively and most, but not all studies, found that DM is associated with an increased risk for several types of cancer. Most published data, however, require re-interpretation because DM is not a single disease but rather a group of metabolic disorders characterized by hyperglycemia. Within this general context, each type of diabetes has additional metabolic and hormonal abnormalities that differently affect diabetic patients. It is therefore inappropriate to consider diabetic patients as a homogeneous cohort. In addition, a series of potential confounders directly related to the disease (obesity, quality of metabolic control, drugs employed for treatment, diet, etc.) and present in diabetic patients may influence the association between diabetes and cancer.

In the present review we will discuss the available evidence concerning the association between diabetes and cancer, the different aspects of diabetes that may influence this association and the possible mechanisms involved.

1. Cancer risk is increased in diabetic patients

A series of recent studies and meta-analyses confirm that the risk for several solid and hematologic malignancies (including liver, pancreas, colorectal, kidney, bladder, endometrial and breast cancers and non-Hodgkin’s lymphoma) is more elevated in diabetic patients (Table
Evidence for the association of diabetes with other cancers is not available, while for prostate cancer a reduced incidence has been reported in diabetic patients (Table 1). If we accept that cancer is more frequent in DM, the positive association between diabetes and cancer risk might actually be somewhat underestimated. Diabetes, in fact, is an underdiagnosed disease (3-5% of the adult population has undiagnosed diabetes) (Harris, et al. 1998) and thus the control population very likely includes individuals with diabetes, which will increase the cancer risk in the “normal” population.

In diabetic patients cancer may be favored by: i) general mechanisms that promote cancer initiation or progression in any organ because they are due to alterations (i.e. hyperglycemia or hyperinsulinemia or drugs) that affect all tissues; and ii) site-specific mechanisms affecting cancerogenesis of a particular organ.

The incidence of liver and pancreatic cancer is increased in diabetes

Several meta-analyses indicate that the strongest association between DM and increased cancer risk is with pancreatic and liver cancer (Table 1), i.e. two key organs involved in the metabolic derangements typical of diabetes.

Because of the portal circulation, liver cells are exposed to higher insulin concentrations than other tissues, a condition that is exacerbated in insulin-resistant hyperinsulinemic type 2 diabetic individuals, but that is not present in insulin deficient type 1 diabetic patients treated with exogenous insulin (see Fig. 1). It is unlikely therefore, that insulin’s mitogenic action is specifically involved in the higher incidence of liver cancer in diabetic patients since healthy liver cells are physiologically exposed to higher insulin concentrations than other tissues. Moreover, in diabetic patients injected with exogenous insulin the liver is exposed to the same insulin levels of the other organs.
Since most epidemiologic studies indicate a 2-3 fold increase in hepatocellular carcinomas (HCC) in diabetic patients, other conditions, specific of the liver, must favor liver cancerogenesis in diabetic patients. It has been questioned whether diabetes is a direct risk factor for liver cancer or whether diabetes-related diseases of the liver are also involved. Indeed steatosis and cirrhosis, both well-know risk factors for HCC, are more frequent in diabetic patients. Likewise, the non-alcoholic fatty liver disease (NAFLD) is very common in both diabetes and obesity and even more frequent in obese-diabetic patients, a condition occurring in over 80% of type 2 diabetic patients. Additional factors that may favor HCC in DM include HBV and HCV infections, both more frequent in diabetic subjects as compared to the non diabetic population (Chen, et al. 2006; Davila, et al. 2005).

In conclusion, increased liver cancer incidence in diabetes is well documented and, although the exact mechanisms underlying this association are still unclear, liver inflammation, hepatocyte damage and repair are likely involved in the higher frequency of HCC among diabetic patients.

Most of earlier studies investigating the association between diabetes and pancreatic cancer are probably misleading because they do not distinguish between pre-existing diabetes (a condition possibly favoring exocrine pancreatic cancer) and new-onset diabetes (a possible sign of pancreatic functional damage due to a still undiagnosed pancreatic cancer (Noy and Bilezikian 1994). The latter situation is so frequent that hyperglycemia and diabetes, when appearing after the age of 45-50 years, in a lean subject with no family history for diabetes, are considered sufficient to pose an indication for pancreatic cancer screening (Chari, et al. 2008; Noy and Bilezikian 1994; Pannala, et al. 2009). Similarly, elderly subjects with new-onset diabetes have a 3-year risk of pancreatic cancer nearly 8 times higher than a non diabetic person of similar age and sex (Chari, et al. 2005). Laboratory and clinical evidences
suggest that diabetes caused by pancreatic cancer is due to cytokines produced by the tumor (Basso, et al. 2002) rather than secondary to the endocrine pancreatic tissue invasion and damage (Pannala et al. 2009). This conclusion is supported also by the observation that hyperglycemia occurs at an early stage of pancreatic cancer and is independent of tumor size and stage (Chari et al. 2008; Pannala, et al. 2008). Epidemiological studies in subjects affected by DM at least 1 year prior to diagnosis or death from pancreatic cancer indicated a RR of 2.1 (95% C.I.= 1.6-2.8). When the same analysis was carried out including only patients with 5 years of pre-diagnosed diabetes, their RR for pancreatic cancer was similar (RR=2.0) (Everhart and Wright 1995). Since all of these data exclude diabetes induced by pancreatic tumors, the reported findings support the possibility the diabetes is indeed a risk factor for pancreatic cancer.

“Pre-diabetes” state should also be considered a risk factor for pancreatic cancer. Studies that evaluated the association between post-load glucose levels and pancreatic tumors in 35,658 individuals reported a higher RR with increasing glucose tolerance impairment. After adjusting for age, race, cigarette smoking and BMI, the risk progressively increased from normal subjects to subjects with slightly altered glycemia (RR= 1.65) and then to diabetes (RR = 2.15) (Gapstur, et al. 2000). These results did not change when patients who died of pancreatic cancer during the first 5 years after the assessment of post-load glucose levels were excluded, further suggesting that hyperglycemia and diabetes per se are predisposing factors for pancreatic cancer.

The biological mechanisms underlying the association between diabetes and pancreatic cancer are unclear. Hyperinsulinemia has been indicated as a possible factor because exocrine pancreatic cells, which give rise to most pancreatic cancers, are exposed to very high insulin concentrations because of the common blood supply with the adjacent insulin secreting islets (Williams and Goldfine 1985). Elevated insulin could act as a tumor growth-promoting factor.
in many different ways (see later). This mechanism however, doesn’t justify the excess of pancreatic cancer in insulin-treated diabetic patients (Green and Jensen 1985) or in type 1 diabetes (Stevens, et al. 2007) where pancreatic cells are not exposed to insulin levels higher than those of other tissues. In these studies, however, the analysis is hampered by the insufficient number of cases accrued, due to both the type of diabetes (type 1 diabetes accounts for less than 10% of all DM patients) and patient age (pancreatic cancer is rare before age 40).

Increased incidence of other cancers in diabetes

An increased frequency of malignancies of other organs has been reported in diabetic patients and has been ascribed to a variety of general and local mechanisms. In these cases, studies are not as numerous as for liver and pancreatic tumors, and the increases in RR are not as statistically significant. However, in many instances the increased risk is clinically relevant, especially considering the prevalence of the two diseases in the general population.

In diabetic patients the increased incidence and increased mortality for kidney cancer has been attributed to both general mechanisms (hyperinsulinemia, obesity) and specific factors, mainly hypertension (Chow, et al. 2000; Yuan, et al. 1998; Zucchetto, et al. 2007) and the frequent kidney diseases occurring in diabetic patients (Lindblad P 2002).

Individuals with DM also display a modest increase in the risk of bladder cancer. In this case, in addition to general factors like hyperinsulinemia, the increased frequency of urinary tract infections is also likely to be involved.

The risk of cancers of the female reproductive organs is also increased in DM. Both breast and endometrial cancer risk is increased in diabetic women and this risk is independent from
obesity (a well established factor promoting breast cancer) as it persists even after correcting epidemiological data for this disease.

Several biological mechanisms may be involved, mostly regarding sex hormone abnormalities. Hyperinsulinemia may increase the levels of bioactive estrogens by decreasing the concentration of circulating sex hormone binding globulin (Kaaks 1996) and might also stimulate androgen synthesis in the ovarian stroma (Kaaks 1996). Other possible mechanisms include delayed menarche, especially in type 1 diabetic women, who also have a higher incidence of nulliparity, irregular menses and fertility disorders.

Type 2 diabetes has been associated with an increased risk of colorectal adenomas and carcinomas in most, but not all, studies (Elwing, et al. 2006; Limburg, et al. 2006). The risk is increased in both women and men for both colon and rectal cancer (Larsson et al. 2005). In addition to hyperinsulinemia, hypothesized mechanisms include slower bowel transit time and the elevated fecal bile acid concentrations often observed in DM (Stadler, et al. 1988; Will, et al. 1998).

Large prospective cohort studies and case-control studies have shown a moderate increase of non-Hodgkin’s lymphoma in diabetic patients, a possible consequence of the immune dysfunction related to impaired neutrophil activity and abnormalities in cellular and humoral immunity in diabetes (Mitri et al. 2008).

Decreased incidence of prostate cancer in diabetes

In contrast to the increased risk for numerous forms of neoplasia, most studies report a reduced risk of prostate cancer in men with diabetes. A recent meta-analysis (Kasper and Giovannucci 2006) including both 14 studies carried out in the pre-PSA era (Bonovas, et al. 2004) and also 5 additional studies carried out in the PSA era (and concerning, therefore,
earlier diagnosed and smaller cancers) found a significantly reduced risk in diabetic patients (Table 1). The 16% average decreased risk of developing prostate cancer must most likely be attributed to the decreased testosterone levels in diabetic patients (Barrett-Connor 1992; Betancourt-Albrecht and Cunningham 2003). However, other metabolic and hormonal factors, including altered insulin and leptin concentrations, the diffuse use of medications like statins and metformin, and changes in diet and life-style in order to control diabetes, have also been hypothesized as elements potentially contributing to the inverse association between diabetes and prostate cancer (Kasper and Giovannucci 2006).

In conclusion the epidemiological studies cited above may be partially biased by relevant heterogeneity due to different study design (inclusion criteria), incomplete characterization of DM, failure to consider potential confounders (obesity, diabetes duration and treatment) and also variably defined control population. However, the overall increased risk for the development of several types of cancer in diabetic patients must be considered well documented. In diabetes there is a mild-moderate increase in the incidence of pancreas, liver, breast, colorectal, urinary tract and female reproductive organ cancer and a mild reduction of prostate cancer risk.

2. Cancer mortality is increased in diabetic patients

Data on cancer mortality in diabetic patients are less abundant and less homogeneous than data on cancer incidence.

A positive association between breast cancer mortality and diabetes was found in 3 out of 5 studies, with a RR from the pooled data of the 5 studies of 1.24 (95% C.I. = 0.95-1.62) (Larsson et al. 2007). In the largest study (cohort size 588,321 with 4,346 deaths for breast cancer), after adjusting for age, race, BMI, physical activity, smoking and alcohol, RR in
diabetic women was 1.27 (1.11-1.45) when compared to the non diabetic female population. In this cohort, as in most others, no stratification was performed for type of diabetes and different treatments. In addition, the menopausal status was not recorded (Coughlin, et al. 2004). In a recent study aimed at evaluating whether diabetes could affect breast cancer prognosis, after a 5 year mean follow-up mortality for breast cancer was significantly higher in women with diabetes (hazard ratio 1.39; 95% C.I. = 1.22-1.59, p<0.0001) suggesting that early survival following breast cancer was reduced in women with diabetes (Lipscombe, et al. 2008). This reduced survival might be a consequence of more aggressive breast cancer but also of diabetes-related comorbidities. In fact, in that study, the cause of death was not recorded and diabetic women without breast cancer had an increase in mortality similar to that of diabetic women with breast cancer suggesting that diabetes, rather than breast cancer, was the major factor contributing to the raising mortality.

Diabetes was also positively associated with colorectal cancer mortality. A statistically significant association was found in 3 out of 6 studies (Larsson et al. 2005) and a non significant positive association was reported in a fourth one. Pooled data from the 6 studies indicated a positive association between diabetes and colorectal cancer mortality (RR=1.26; 95% C.I. = 1.05-1.50), but heterogeneity issues partially compromise the significance of the results. Within these six articles the two cohort studies that evaluated standardized mortality ratio both indicated a positive association between DM and colorectal cancer death. However, only one study reported a statistically significant increased mortality from colorectal cancer in diabetic patients. A study aimed at evaluating the influence of diabetes on long term outcome of patients resected for colon cancer (3,759 patients, 287 with DM) found that diabetes negatively affected survival in colon cancer patients (Meyerhardt, et al. 2003). Data were adjusted for predictors of colon cancer outcome (age, gender, race, clinical status, TNM class, Dukes stage, location of primary tumor and grade of differentiation) and indicated that both
disease-free survival (DFS) and overall survival (OS) at 5 years were significantly reduced in diabetic patients (DFS=48% vs. 59% in non diabetics, p<0.0001; OS=57% vs. 66% in non diabetics, p<0.0001). Median survival in diabetic patients was years 6.0 vs. 11.3 in non diabetic subjects. In this study the role of DM comorbidities (that may negatively affect overall mortality among cancer patients because of adverse health conditions) was probably minor since cancer recurrence was also higher in diabetic patients (recurrence free survival 56% vs. 64% in non diabetics, p<0.012).

A positive association was also found between diabetes and endometrial cancer mortality in 2 studies but it was significant only in one of them (RR= 2.38; 95% C.I. = 1.05 – 5.37) (Coughlin et al. 2004; Folsom, et al. 2004).

It is interesting to note that, although diabetic patients have a reduced risk for prostate cancer, once an insulin-resistant, overweight man has been diagnosed with prostate cancer, his likelihood of dying for the disease is increased (Ma, et al. 2008).

A recent study on systematic assessment of long-term, all-cause mortality in cancer patients with or without diabetes, evaluated at 1.41 (95% C.I. 1.28-1.55) the hazard ratio for death in cancer patients with diabetes in respect to cancer patients without diabetes (Barone, et al. 2008). Mortality was significantly increased for cancers of the breast, endometrium, colon and rectum. In this study the increase in mortality risk was not significantly increased for lung, gastric, liver, pancreatic prostate and cancer. Overall, however, the heterogeneity of the studies analyzed and the length of the observation period (1969-2008, during which treatment for both cancer and diabetes changed markedly) hamper, at least in part, the significance of the data.

Several possible explanations can be put forth to explain the increased risk of cancer death in DM. For instance, it is still unclear whether diabetes, through a number of mechanisms, makes the cancer more aggressive or whether the host organism is less resistant to cancer
progression. It is also possible that diabetic patients receive different cancer treatment (i.e. oncologists may employ lower chemotherapy doses in diabetic patients, concerned about their general health and their hearth, liver and kidney function). Of course it is also possible that diabetic patients may have a worse response to chemotherapy if compared to non diabetic individuals.

In conclusion epidemiologic studies provide evidence that cancer mortality is moderately increased in diabetic patients. Whether this is a consequence of hyperglycemia and hyperinsulinemia (growth promoting effect on cancer cells), of the impaired health conditions due to the diabetes comorbidities or a combination of the two is still unclear.

3. Type 1 and Type 2 diabetes and cancer risk

DM is a group of metabolic disorders characterized by hyperglycemia. The two most frequent subtypes of diabetes mellitus differ for both metabolic and hormonal characteristics: in type 1 diabetic patients (5-10% of all diabetics) hyperglycemia is associated with an absolute deficiency of endogenous insulin secretion and the absolute requirement for exogenous insulin administration.

In type 2 diabetes hyperglycemia and hyperinsulinemia coexist for a long time because of the insulin resistance of peripheral tissues. Only when the beta-cell function fails completely, will the patient require insulin treatment because of endogenous insulin deficiency.

In spite of these considerable pathogenetic and clinical differences, many studies on the association between diabetes and cancer were carried out without an appropriate distinction between the two forms of diabetes.
For obvious epidemiological reasons most studies on the association between cancer and diabetes have been carried out in patients with type 2 diabetes (90% of all diabetic patients). As these patients, unlike those with type 1 diabetes, have endogenous hyperinsulinemia and insulin resistance, it is questionable whether these data can be automatically extended to type 1 diabetic patients. This concern is particularly relevant for the older reports in which diabetes assessment was based on self-reported hyperglycemia, with no criteria aimed at distinguishing type 1 from type 2 diabetes. Although more recent studies have been based on medical records, the distinction between type 1 and type 2 diabetes was mostly based on surrogate indicators of diabetes type, like young patient age or insulin-treatment (assumed as type 1) versus insulin-independent diabetes (assumed as type 2). This distinction doesn’t take into account many specific conditions, including type 2 diabetic patients that are treated with insulin because oral hypoglycemic agents (OHA) are no longer effective (secondary failure to OHA), type 1 diabetes of the adult (approximately 5% of adult subjects previously classified as type 2 diabetes) (Buzzetti, et al. 2007), and other less frequent conditions.

Because of the 10:1 ratio between type 2 and type 1 diabetes, and considering that cancer is mainly a disease of the older population (where type 1 diabetes is less frequent), it is reasonable to assume that the large majority of tumors observed in diabetic patients occurred in type 2 diabetics.

Thus if cancer association with type 1 diabetes has specific characteristics, these have likely been obscured by the large majority of cancers diagnosed in type 2 diabetic patients.

Even the few studies specifically addressing cancer incidence in type 1 diabetic patients suffer from poor diabetes type assessment. For example, a recent cohort study evaluating cancer incidence in nearly 30,000 Swedish type 1 diabetic patients diagnosed in the period 1965-1999 identified 355 cases of cancer (standardized incidence ratio = 1.2; 95% C.I. = 1.0-1.3, compared to the general Sweden population) (Zendehdel, et al. 2003). At variance with type 2
diabetic patients, no increased risk of breast, pancreatic, colorectal or kidney cancer was found in this cohort. However, type 1 diabetic patients had an increased RR for stomach (S.I.R. = 2.3; 95% C.I. = 1.1-4.1), endometrial (SIR = 2.7; 95% C.I. = 1.4-4.7) and cervical cancer (1.6; 1.1-2.2). These positive associations have been attributed to the high prevalence of Helicobacter Pylori infection or of pernicious anemia (for gastric carcinomas) (De Block, et al. 1999; Oldenburg, et al. 1996) and to the higher incidence of nulliparity, irregular menses and fertility disorders in type 1 diabetic women (for uterine malignancies). In contrast with this report, a recent meta-analysis including 3 cohort studies and 6 case-control studies, found that the RR for pancreatic cancer was doubled in type 1 diabetic patients and young-onset diabetics in comparison with non diabetics (Stevens et al. 2007).

In conclusion the large majority of the epidemiological data on cancer incidence and mortality have been obtained in type 2 diabetic patients. Because of the different biology between the two subtypes of diabetes, these findings can not be acritically extended to type 1 diabetic subjects.

4. The role of hyperinsulinemia in favoring cancer incidence and progression in diabetic patients.

A role for insulin in promoting cancer growth was first recognized by studies in experimental animals. Rats and mice made diabetic with streptozotocin or alloxan (therefore hyperglycemic and insulin deficient) developed less aggressive tumors as they display a longer latency period for cancer development, lower number of tumors, slower cancer progression and smaller final tumor volume in respect to control animals (Heuson and Legros 1972) (Fig. 1). Insulin treatment reversed these effects (Heuson, et al. 1972). These results are in concert with the
well known mitogenic effect of insulin that has been extensively documented both in vitro and in vivo.

Most type 1 and type 2 diabetic patients are exposed for decades to increased insulin concentrations although the physiologic and therapeutic conditions are very different in each individual with diabetes.

Type 1 diabetic patients have an absolute requirement for exogenous insulin because the autoimmune insulites has destroyed their pancreatic beta-cells that are therefore unable to produce endogenous insulin. In these patients insulin administration does not mimic the physiologic insulin secretion not only in terms of temporal pattern and hormone serum levels, but also in terms of compartment distribution. Indeed, pancreas secreted insulin is first distributed to the liver (first passage insulin) where a relevant aliquot (up to 80%) (Ferrannini and Cobelli 1987) is retained and degraded. The remaining hormone reaches the peripheral tissues through the systemic circulation. The liver/peripheral tissue insulin concentration ratio, therefore, ranges from 3:1 up to 9:1 during insulin secretion bursts. Exogenously administered insulin, in contrast, will arrive to peripheral tissues and to the liver at the same time and at a similar concentration. Peripheral tissue hyperinsulinemia due to exogenous insulin (circulating levels may peak 2-5 fold higher than normal endogenous levels, depending on the dose injected and the type of insulin or analog used) and the ensuing relative liver hypoinsulinemia, therefore, are a common condition in type 1 diabetic patients (Fig. 2).

On the contrary, in most type 2 diabetic patients hyperglycemia is associated with endogenous hyperinsulinemia, a compensatory state caused by insulin resistance. This condition often persists for many years (decades when including the “pre-diabetes” period before clinically evident diabetes is diagnosed). Hence, in these patients the liver/peripheral tissue insulin concentration ratio reflects that of non-diabetic patients, but at a higher level.
However, at variance with normal individuals, in these diabetic patients increased insulin secretion fails to replete with body fuel storages in response to feeding because of insulin resistance. Therefore, in these patients, excess unused substrates (i.e. glucose) are present concomitantly with hyperinsulinemia. This abnormal situation is accompanied by a series of other abnormalities involving other hormones, like glucagon, incretins, leptin, etc.

As DM persists for many years, this scenario is often subject to changes, with most type 2 diabetic patients progressively presenting decreased insulin secretion following the failure of β-cells, due to increased apoptosis rates that are not balanced by an insufficient neogenesis. At this stage patients with type 2 diabetes may become similar to type 1 diabetic individuals, with endogenous hypoinsulinemia and exogenous insulin requirement.

When studying type 2 diabetic patients, therefore, diabetes duration and insulin requirement may affect tissue exposure to insulin in different ways. If hyperinsulinemia has a role in promoting cancer initiation and/or progression, these aspects should be considered when determining the individual risk of a diabetic patient to develop cancer. Most studies on the diabetes-cancer association overlooked these different biological conditions.

In conclusion, diabetes is generally characterized by hyperglycemia and hyperinsulinemia, often coupled with a reduced metabolic effect of insulin (insulin resistance) in peripheral tissues. Chronic hyper-insulinemia, however, is a possible factor favoring cancer initiation and/or progression in diabetic patients due to the mitogenic effect of insulin. The heterogeneity and complexity of different tissue exposure to hyperinsulinemia in diabetic individuals doesn’t allow to quantify the role of insulin in promoting cancer risk in different organs of different diabetic patients.

One example is the potentially increased risk of lung cancer in diabetic patients using the recently introduced inhaled insulin (von Kriegstein and von Kriegstein 2007). The long-term effects of this form of therapy are unknown. Although short-term studies in animals have
shown no substantial effect on cell proliferation indexes, the high insulin concentration at alveolar and bronchiolar epithelium (due to the fact that only 10-25% of inhaled insulin is absorbed) has raised safety concerns about the possibility that it may promote lung cancer. These concerns have been recently reinforced by the long-time surveillance analysis indicating that 6/4,740 (0.13%) diabetic patients treated with inhaled insulin but only 1/4,292 comparator-treated patients (0.02%) developed lung cancer (Mitri and Pittas 2009).

There are multiple and complex mechanisms potentially responsible for the mitogenic effects of insulin.

First, when insulin levels increase (as in the post-prandial surge in insulin-resistant subjects or after insulin injection), insulin may bind and activate the related IGF-I receptor, which shares approximately 80% homology with the insulin receptor (IR), but has a more potent mitogenic and transforming activity. Moreover, insulin decreases IGF-I binding proteins (IGF-BP1 and, perhaps, IGF-BP2) (Kaaks and Lukanova 2001): this will result in increased free IGF-I, the biologically active form of the growth factor.

Second, many cancer cells have an increased insulin receptor (IR) content (Papa, et al. 1990) (Fig. 3A). The IR may be expressed in 2 different isoforms, A and B, produced by an alternative splicing of the IR gene transcript (Moller, et al. 1989). In malignant cells, the A isoform (IR-A) expression is predominant (Frasca, et al. 1999; Kalli, et al. 2002; Sciacca, et al. 1999) (Fig. 3B) and its activation, at variance with the IR-B isoform, elicits more mitogenic than metabolic effects (Frasca et al. 1999). By binding to the overexpressed IR-A, insulin may favor cancer progression and facilitate the growth of tumors that would otherwise have likely remained clinically irrelevant for an undetermined length of time.

Finally, insulin mitogenic activity might be enhanced at the cellular level by post-receptor molecular mechanisms, including insulin (or its synthetic analogs) residence time on the receptor (De Meyts, et al. 1995) and the intracellular up-regulation of the insulin mitogenic
pathway. Experimental data indicate that this pathway, unlike the insulin metabolic pathway, may not be blunted in the condition of insulin resistance typical of diabetes (Fig. 4). The AMP activated protein kinase (AMPK), mTOR and insulin signaling pathway represent three interrelated components of a complex mechanism controlling cell responses to nutrient availability and their dysregulation may favor malignant cell proliferation in response to hyperinsulinemia.

In conclusion, strong but circumstantial evidence indicates a role for endogenous hyperinsulinemia and of exogenous insulin or analogs in promoting cancer growth in diabetic patients. However, the clinical relevance of this pro-cancer effect of insulin in diabetic patients is still unclear.

5. Antidiabetic drugs that may influence cancer risk in diabetic patients

Most diabetic patients are treated for years or decades with a variety of drugs (Table 2). The potential role of these drugs in favoring cancer is unclear but most likely minor, if any. Data are not conclusive because the large majority of diabetic patients change the drug dosage and/or the type many times during the course of the disease. Moreover, many are treated with more than one drug. Epidemiological studies on this issue, therefore, are difficult to interpret and often inconclusive.

The three major oral antidiabetic drug families (sulphonylureas, biguanides and thiazolidinediones) have a different mechanism of action. Sulphonylureas stimulate endogenous insulin secretion while the other two categories of compounds are insulin-sensitizers, i.e. they make tissues more responsive to insulin and, therefore, decrease hyperinsulinemia. If hyperinsulinemia plays a role in increasing cancer risk and progression in diabetic patients, it is reasonable to expect that these drugs will have a different effect on
the association between diabetes and cancer. The biguanide metformin, widely used for more than 30 years and currently suggested as first-line therapy in type 2 diabetic patients, has been recently reported to reduce cancer risk (odd ratio= 0.86) when compared to untreated patients (Evans, et al. 2005). In addition to lowering the amount of circulating insulin, another possible mechanism for the anti-cancer effect of metformin is the stimulation of AMP activated protein kinase (AMPK, an enzyme inducing glucose uptake by muscles) and its upstream regulator LKB1, a well recognized tumor suppressor protein (Luo, et al. 2005). AMPK activators act as antiproliferative agents because they reduce insulin (and IGF-I) signaling downstream of the receptor and, therefore, inhibit insulin-stimulated proliferation (McCarty 2004; Ruderman and Prentki 2004). Hence, the anti-cancer effect of metformin can be explained by this dual mechanism.

Recent studies in MCF-7, BT-474 and SKBR-3 human breast cancer cells showed that in vitro metformin inhibited cell proliferation, reduced colony formation and caused partial cell cycle arrest (Alimova, et al. 2009). These effects mainly occurred via MAPK, Akt and mTOR inhibition and were replicated also in erbB2 overexpressing cells. On the basis of both epidemiological data and in vitro studies, a clinical trial for evaluating metformin activity on breast cancer cell proliferation (Ki67 index) is currently undergoing in 100 breast cancer patients (Cazzaniga, et al. 2009).

Data on the other insulin-sensitizing drug (thiazolidinediones) are more controversial. A beneficial (Govindarajan, et al. 2007), neutral (Koro, et al. 2007) or even deleterious (Ramos-Nino, et al. 2007) effect has been reported for different types of cancer. The biological mechanism of these compounds is to activate PPARgamma receptors, which, in several in vitro experimental models, has shown a potential anticancer effect (Aiello, et al. 2006). In addition to lowering hyperinsulinemia, this effect can explain the described anticancer effect.
of glitazones. In any case, the use of these compounds is too recent and too limited to consider reliable the present meager epidemiologic observations.

The third group of drugs (sulphonylureas) are secretagogues, i.e. increase insulin secretion and cause hyperinsulinemia. As expected, therefore, they have been associated with an increased risk of cancer (Bowker, et al. 2006). Different sulphonylureas may have different effects, with glyburide being more deleterious than gliclazide (Monami, et al. 2007). Although their effect on cancer risk is attributed to the prolonged hyperinsulinemia that they induce in patients, a direct effect on cancer (either positive or negative) cannot be excluded.

In conclusion, some evidences suggest that the biguanide metformin may reduce cancer risk in diabetic patients but, in general, the influence of antidiabetic drugs on the risk of cancer is not well studied and evidences are weak, indirect and controversial.

6. Other factors that may influence the risk of cancer in diabetes

- Obesity

Over 80% of type 2 diabetic patients are obese. Obesity is associated with a higher incidence and a higher mortality for cancer (Adami and Trichopoulos 2003; Vigneri, et al. 2006). Moreover, cancer mortality significantly increases with increasing patient BMI (Body Mass Index) (Calle, et al. 2003). Fat distribution in the body is also important: central (upper body or android) obesity is more harmful than gynoid obesity in terms of increased risk and worst cancer outcome. Given these observations, it is evident that studies on the association diabetes-cancer are influenced by the high prevalence of obesity in DM patients. Since both DM and obesity are characterized by hyperinsulinemia and higher cancer incidence, it is difficult to identify the contribution of each of the two conditions.
Among the many possible mechanisms involved, hyperinsulinemia (which is typical of central obesity), diet and nutritional factors causing a positive energy balance and other hormone abnormalities have been indicated as causal factors.

A tight correlation has been observed between obesity, circulating estrogen levels and increased breast cancer risk (Cleary and Grossmann 2009; Key, et al. 2003) especially in post-menopausal women. Obese post-menopausal women usually present an increase in both estrone and estradiol, a likely consequence of the increased aromatase activity of the adipose tissue (Reed and Purohit 2001). Considering the growing prevalence of obesity and diabetes in both developed and developing countries, these data might explain the reported rise in estrogen receptor (ER)-positive breast cancers (Glass, et al. 2007). Several other molecular alterations associated with obesity might also be responsible for the higher incidence of breast cancer found in obese (and obese-diabetic) pre- and post-menopausal women. Preclinical evidence has suggested that leptin, an adipocyte-derived cytokine, highly expressed in obese subjects, promotes breast cancer cell proliferation (Hu, et al. 2002), an observation that has not yet been confirmed in the clinical setting since an association between leptin levels and breast cancer outcome has not been demonstrated (Goodwin, et al. 2005). Another adipokine produced by the adipose tissue, adiponectin, which is inversely correlated with body fat, might exert a protective effect on breast epithelial cells since its addition to different breast cancer cell lines inhibited proliferation and enhanced apoptosis (Cleary, et al. 2009).

- **Hyperglycemia**

Most diabetic patients present both hyperglycemia and hyperinsulinemia. Thus it is difficult to distinguish the specific role of each abnormality in increasing cancer risk.

It is known that a high intake of sugar and refined carbohydrates and the elevated blood glucose levels are strongly associated with the risk of cancer (Krone and Ely 2005). It is also
known that impaired glucose tolerance without diabetes is associated with increased cancer risk (Dankner, et al. 2007). Both these conditions, however, are also characterized by hyperinsulinemia. Although many convincing evidences demonstrate an association between hyperglycemia and cancer, it has yet to be demonstrated that hyperglycemia per se is an independent risk factor.

Possible mechanisms implicated include the role of an abnormal energy balance and the effect of hyperglycemia in impairing the effect of ascorbic acid on the intracellular metabolism and reducing the effectiveness of the immune system. Further evidence suggests a role for the oxidative stress responsive genes (like thireodoxin-interacting protein) that are sensitive to hyperglycemia and regulate the level of reactive oxygen species (Turturro, et al. 2007).

- Free Fatty Acids

Deregulation of Fatty Acid Synthase (FASN) activity, which catalyzes de novo fatty acids biogenesis (Hillgartner, et al. 1995; Semenkovich, et al. 1995), could also play a role in the pathogenesis of insulin resistance, diabetes and cancer. FASN activity is important for de novo fatty acid synthesis in the liver and is stimulated by low-fat/high carbohydrate diet (Hudgins 2000; Hudgins, et al. 2000). Interestingly, FASN expression is increased in insulin resistant/hyperinsulinenic patients (Claycombe, et al. 1998; Moustaid, et al. 1996) and its increased activity further worsen insulin resistance and may result in non alcoholic fatty liver disease (NAFLD) (Postic and Girard 2008), which is associated with an increased risk of hepatocarcinoma (Caldwell and Lazo 2009). FASN activity is also increased on cancer cells, where de novo fatty acid synthesis is crucial for membrane remodeling during cells migration and proliferation, as well as for lipid-based post-translational modifications of intracellular proteins in highly proliferating cell populations (i.e. myristylation of RAS). The concept that FASN is directly involved in affecting tumor progression derives also from studies with the
FASN blocker cerulenin (Lupu and Menendez 2006a, b). Indeed, cell exposure to this inhibitor results in cytostatic, cytotoxic and apoptotic effects in vitro and retards the growth of tumor in xenograft models (Menendez, et al. 2009).

Therefore, FASN activity and fatty acid production is another possible link between diabetes and cancer as indicated by the hypothesis that insulin resistant conditions such as obesity, type 2 diabetes and cancer are favored by common FASN-driven “lipogenic state” (Menendez et al. 2009).

- **Chronic inflammation and oxidative stress**

The metabolic abnormalities that characterize diabetes, especially under conditions of poor metabolic control increase oxidative stress and cause a permanent pro-inflammatory condition. This chronic (years and decades) pro-inflammatory state reduces intracellular antioxidant capacities predisposing susceptible cells to malignant transformation. In fact, high concentrations of diverse free radicals and oxidants generate potent reactive oxygen species (ROS) that can damage cell DNA by direct oxidation or by interfering with the mechanisms of DNA repair (Federico, et al. 2007). ROS may also react with proteins and lipids, forming derivative products that may alter intracellular homeostasis favoring the accumulation of mutations that, in turn, contribute to the multistage carcinogenesis process (Ohshima, et al. 2003).

A possible additional mechanism is related to the mitochondrial dysfunction, a well recognized abnormality in diabetes. DNA repair is a high energy consuming process that requires increased mitochondrial activity: stimulating malfunctioning mitochondria will not only provide low, insufficient energy supply, but also increase ROS production (Cebioglu, et al. 2008).
Moreover, an additional factor correlated with insulin resistance is the proinflammatory cytokine TNFα (Tumor Necrosis Factor α) produced by the adipose tissue (Kern, et al. 2001). TNFα induces development and progression of many tumors (Szlosarek, et al. 2006) by strongly activating NF-kappaB (Nuclear Factor-kappa B) which mediates many of the protumoral effects of TNFα.

In conclusion DM, by mechanisms both specific to diabetes and common with other chronic degenerative diseases, might accelerate the ageing biological processes that favor cancerogenesis.

7. Drugs used to treat cancer may favor diabetes

A recently emerging issue is the possible adverse effect on glucose metabolism of anti-cancer therapies. Cancer patients can exhibit temporary hyperglycemic states or full-blown diabetes following steroid-based medication (administered before and during chemo-therapy), or because of the specific mechanism of action of an anti-cancer drugs. Glucocorticoids are frequently used at a high dosage to both prevent and/or cure allergic reactions, inflammatory states caused by anticancer treatment, for their anti-edema effect and to alleviate fatigue. Glucocorticoids, however, have a potent diabetogenic effect because at high doses they cause severe insulin resistance, which can be compensated by hyperinsulinemia only when the patient’s pancreas is functioning well. Otherwise glucocorticoid administration may result in the worsening of a condition of pre-diabetes or un-diagnosed diabetes, and may transform mild diabetes into a clinically severe illness, possibly leading to the deadly hyperosmolar coma. Due to the high prevalence of diabetes and pre-diabetes (over 15-20% in the aged population, the one more prone to cancer) this is a real health risk.
Apart from corticosteroids, also \textit{anti-androgens} may adversely affect glucose metabolism. Androgen deprivation therapy is the fundamental treatment of prostate cancer. This therapy causes a variety of metabolic abnormalities that include decreased insulin sensitivity and altered lipid profile and, therefore, increased risk of diabetes and cardiovascular disease (Saylor and Smith 2009).

Androgens are important determinants of body composition: their inhibition increases fat mass and decreases lean body mass. In patients treated with GnRH (Gonadotropin Releasing Hormone) agonists and/or nonsteroidal anti-androgens, such as Flutamide, Bicalutamide and Nilutamide, or with the steroidal antiandrogen cyproterone acetate, “sarcopenic obesity” is favored, a combination of excess body weight and reduced muscle mass. Fat accumulation is primarily subcutaneous and is often associated with increased total cholesterol, triglycerides and HDL. These changes result in insulin resistance and, sometimes, diabetes. In a recent study in over 70,000 subjects with locoregional prostate cancer, those who were treated with GnRH had a 44% increased risk of developing diabetes (Keating, et al. 2006). Diet and lifestyle interventions with a 5-10% weight loss, and statin drugs are the main strategies for preventing or treating the metabolic complications of androgen deprivation therapy in prostate cancer patients.

The other most currently employed targeted anti-cancer molecules do not significantly affect glucose homeostasis. However, an increasing number of compounds is being tested for therapeutic use that alter the IGF-I system and its intracellular pathways. The increasing use of these compounds may amplify the frequency of anti-cancer drug-related diabetes. Since IGF-I signaling plays a key role in both tumor progression and glucose homeostasis, therapies targeting the IGF system for its pro-cancer effect may at the same time cause hyperglycemia.
In this paragraph we will examine drugs and mechanisms responsible for hyperglycemia induced by novel anti-cancer therapies that may alter insulin-glucose balance.

IGF-I system targeting anticancer treatments

IGF-I and insulin, their receptors and their intracellular signaling pathways share large similarities. Likewise, the biological (metabolic and mitogenic) effects of the two hormones partially overlap. Because of the well-known role of IGF-I as a cancer promoting factor, many efforts have been made to block its function in cancer patients. However, these efforts may have a detrimental effect on glucose metabolism because of three different mechanisms: i) the inhibition of the IGF-I insulin-mimetic effect (Fernandez, et al. 2001; Kuzuya, et al. 1993; Pennisi, et al. 2006); ii) the increase in circulating Growth Hormone (GH) levels due to lacking IGF-I feedback (GH is a potent diabetogenic hormone) (Yakar, et al. 2004); and iii) the possibility that agents that block IGF-I signaling might also cross-inhibit the insulin signaling pathway.

Currently, anti-cancer strategies inhibiting the IGF system include both direct targeting of the IGF-I receptor (IGF-IR) with both monoclonal antibodies and suppression of the IGF-IR signaling pathway by protein kinase inhibitors (Fig. 5).

Several *antibodies* targeting the IGF-I peptide or the IGF-IR have been tested, but only the latter are currently undergoing preclinical testing or are in phase I-II trials for the treatment of both hematological (multiple myeloma, leukemia) and solid (sarcomas, carcinomas of the lung, breast, colon and prostate) tumors (Haluska, et al. 2007; Lacy, et al. 2008).

Hyperglycemia has been observed in a few patients enrolled in studies with the anti IGF-IR antibody (Haluska et al. 2007; Lacy et al. 2008). This is likely a consequence of a
compensatory increase in the circulating concentration of GH after IGF-I blockade, with the consequent insulin resistance (del Rincon, et al. 2007) that may cause or worsen diabetes.

A second approach to IGF-I inhibition is to block IGF-IR signaling at the enzymatic level. Since IGF-IR is a trans-membrane tyrosine kinase receptor, several tyrosine kinase inhibitors targeting IGF-IR have been developed and found to be active in preclinical models and in phase I clinical trials (Gable, et al. 2006; Haluska, et al. 2006; Hofmann and Garcia-Echeverria 2005; Ji, et al. 2007; Mulvihill, et al. 2008; Vasilcanu, et al. 2008; Zimmermann, et al. 2008). These small molecules may cause more serious toxicity than that observed with the IGF-IR-specific antibodies, as they cross blood brain barrier with the possibility of neurotoxicity for the inhibition of the neuroprotective effect of IGF-I. Unexpectedly, these TK inhibitors are associated with less hyperglycemia than IGF-IR blocking antibodies. One possible explanation for this difference is that the TK inhibitors do not accumulate in muscle, leaving unaffected IR function on the metabolic process of this tissue (Pollak 2008). More research is needed to clarify this point.

Downstream of the receptor, IGF-I signaling occurs via the activation of enzymes and substrates like PI-3K, Akt and mTOR. When activated via IGF-IR, these substrates play a role in tumor cell proliferation and survival but they are also activated via the IR and heavily contribute to glucose homeostasis. Several compounds targeting different signaling molecules downstream the IGF-R have been tested as anti-cancer-therapies able to inhibit IGF-I mitogenic and anti-apoptotic effects in cancer cells (Fig. 5).

a) Targeting phosphatidylinositol 3-kinase (PI3K), the most proximal pathway component, has the advantage of providing a broader inhibition of downstream signaling compared to distal component inhibition (such as Akt and mTOR). Inhibitors like LY294002 and
wortmannin effectively inhibit PI3K, but poor solubility and high toxicity have prevented their clinical application. New compounds (like PX-866) are now being tested in xenograft models and in phase-I clinical trials (Ihle, et al. 2009a; Ihle, et al. 2009b; Ihle, et al. 2004; LoPiccolo, et al. 2008). In xenograft models, PX-866 increases glucose and insulin levels as well as glucose intolerance. While metformin is not effective in counteracting this effect and lowering glucose levels, glitazones (e.g. pioglitazone) ameliorate glucose balance in these patients, without affecting the anti-tumor activity of the compound (Ihle et al. 2009a; Ihle et al. 2009b; Ihle et al. 2004; LoPiccolo et al. 2008).

b) A variety of Akt inhibitors have been developed (including perifosine, phosphatidylinositol ether lipid analogues PIAs and triciribine phosphate) (Ihle et al. 2009a; Ihle et al. 2009b; Ihle et al. 2004; LoPiccolo et al. 2008) (Fig. 5). Clinical data concerning the anti-tumor activity of Akt inhibitors as well as their effect on glucose homeostasis are insufficient. Recent preliminary data obtained in a xenograft model with GSK690693, a novel ATP-competitive/pan-Akt kinase inhibitor, indicate that abrogating Akt activity results in increased glucose and insulin levels. Interestingly, the diabetogenic effect of GSK690693 is not reverted by either metformin or pioglitazone or GLP-I agonist Exendin-4, but only by a low carbohydrate diet (Crouthamel, et al. 2009; Rhodes, et al. 2008).

c) A further class of targeted drugs that may interfere with blood glucose levels are the inhibitors of the mTOR kinase. This mammalian target of rapamycin (mTOR) serine/threonine kinase and the mTOR-raptor complex (TORC1) regulate cell cycle progression (i.e., G1 to S phase transition) and increase the expression of angiogenic factors. When dysregulated, mTOR plays a key role in cell proliferation and neoplastic transformation
favoring the development of resistance to several types of cancer therapy (Bjornsti and Houghton 2004; Panwalkar, et al. 2004).

Several mTOR inhibitors have been developed in vitro (Fig. 5). Some of them have been used in clinical trials. The most important, Everolimus [RAD001; 40-O-[2-hydrpxyethyl]-rapamycil], an orally available ester derivative of the antifungal antibiotic sirolimus (rapamycin), is currently used as an immunosuppressive agent to prevent rejection in transplant recipients (Eisen, et al. 2003; Lorber, et al. 2005). Immunosuppression maintenance with Everolimus has been associated with a significantly reduced risk of developing de novo malignancies after renal transplant (Kauffman, et al. 2005). Everolimus forms a complex with the immunophilin FKBP-12 which then binds to and disrupts TORC1, leading to mTOR inhibition and G1 phase cell cycle arrest, apoptosis (Aguirre, et al. 2004; Majumder, et al. 2004) and angiogenesis suppression (Majumder et al. 2004). Temsirolimus is a further novel mTOR inhibitor of the same family, recently approved for the treatment of renal cell carcinoma with unfavorable clinical characteristics. As expected from mTOR inhibition, hyperglycemia, hypertriglyceridemia and hypercholesterolemia have been observed in approximately 20% of patients treated with these inhibitors. In particular, recent data have reported increased blood glucose levels in 26% of Temsirolimus treated patients with 11% displaying G3/G4 hyperglycemia (Bellmunt, et al. 2008; Malizzia and Hsu 2008).

Most diabetic patients treated with Temsirolimus required an increase in their hypoglycemic treatment and roughly 30% of non-diabetic patients had to begin a specific therapy to lower their blood glucose (Bellmunt et al. 2008; Malizzia and Hsu 2008). Treatment of mTOR inhibition-related hyperglycemia has not yet been studied.

d) Finally, inhibitors of the ABL tyrosine kinase may also affect glucose homeostasis. In vitro results indicate that ABL is involved in IR signaling and upon insulin stimulation enhances
IR-dependent metabolic effects while attenuating the non-metabolic ones (Frasca, et al. 2007; Genua, et al. 2009). Therefore, treatment with an ABL inhibitor was expected to impair glucose homeostasis (Fig. 6). However, adult patients with chronic and accelerated phase chronic myelogenous leukemia (CML) treated with the ABL inhibitor Imatinib Mesylate have actually shown a consistent reduction in their blood glucose levels (Veneri, et al. 2005). Interestingly, a recent report has described hyperglycemia in approximately 10% of CML patients treated with Nilotinib, a second-generation ABL kinase inhibitor currently used for individuals resistant or intolerant to Imatinib (Kantarjian, et al. 2006). The increase in fasting glucose registered after Nilotinib therapy is predictive of drug response and apparently does not require administration of hypoglycemic drugs (Deremer, et al. 2008). However, the follow-up of the study is too short to yield conclusive evidence, especially considering that patients responding to Nilotinib will have to continue drug treatment indefinitely until disease progression.

In conclusion, in addition to glucocorticoid-and antiandrogen-dependent hyperglycemia, the use of molecular inhibitors of the IGF-I pro-mitogenic and anti-apoptotic signaling will likely become more diffuse in cancer patients, possibly causing hyperglycemia. Since diabetes and pre-diabetes have a high prevalence in the general population and patients treated with these novel anti-cancer compounds often have a considerable life expectancy, careful monitoring of glycemia is a requirement in all patients treated with agents that may interfere, at different levels, with glucose metabolism.
8. Conclusions

The complexity of the various diabetic conditions, the diversities in the biology of different forms of cancer and the multiplicity of the possible mechanisms involved, prevent a comprehensive and definite answer to many questions regarding the association of diabetes with an increased risk of cancer initiation and progression. Most epidemiologic studies have not carefully considered a series of confounding factors and diabetic patients have not been adequately characterized for the type of diabetes, the duration of the disease, the drugs used for therapy, the quality of the metabolic control and the presence of co-morbidities.

Because of the intrinsic heterogeneity of both diabetes and cancer, studies on the association of the two diseases are not easy to carry out. Indeed, considering the wide array of possible mechanisms causing increased cancer incidence and mortality in diabetic patients, it is difficult to accurately define the aims, the recruitment criteria and the appropriate design for such studies.

The available evidence indicates that the level of cancer risk related to diabetes will probably differ for each diabetic patient, on the basis of the cancer type and many other diabetes-related factors. Our present knowledge provides good evidence for a mild increase of cancer risk (and cancer mortality) in diabetic patients, more evident for some site-specific cancers. Present evidence, however, does not allow to accurately define the general and the specific organ cancer risks in the individual diabetic patient. Because of the worldwide growing frequency of diabetes, this question needs to be properly addressed, in order to acquire a more rationale approach to cancer prevention and treatment in diabetic patients.
Declaration of interest: There is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported.

Funding: The studies quoted in this work were partially supported by Associazione Italiana Ricerca sul Cancro (AIRC) to R. Vigneri.

Acknowledgements: The authors are grateful to A. Belfiore (University of Catanzaro) for useful comments and discussions.
References

Cleary MP, Ray A, Rogozina OP, Dogan S & Grossmann ME 2009 Targeting the adiponectin:leptin ratio for postmenopausal breast cancer prevention. *Front Biosci (Schol Ed)* **1** 329-357.

Hillgartner FB, Salati LM & Goodridge AG 1995 Physiological and molecular mechanisms involved in nutritional regulation of fatty acid synthesis. *Physiol Rev* 75 47-76.

Reed MJ & Purohit A 2001 Aromatase regulation and breast cancer. *Clin Endocrinol (Oxf)* **54** 563-571.

FIGURE LEGENDS

Fig. 1
A) Mammary tumor growth in four matched groups of rats given either normal diet or with the additional of oral glucose or of insulin injections or both (significant differences: * p<0.05; ** p<0.01; *** p<0.0005) (Heuson et al. 1972).
B) Mammary tumor regression after induction of alloxan diabetes in two groups of matched rats. Observation period = 6 weeks; p<0.001 (Heuson and Legros 1972).

Fig. 2
- **Endogenous insulin** is distributed according to a three compartment model: (A) produced by pancreas β-cells insulin arrives to the liver (B) were most is used and degraded and, therefore, peripheral tissues receive 1/3-1/10 the amount received by the liver.
- **Exogenous insulin** is distributed according to a single compartment model: once injected all tissues are exposed to the same dose.

Fig. 3
Total IR content and IR isoforms expression in paired normal and cancer specimens from human breast, lung, and colon. Cancer specimens were obtained together with specimens of normal tissue from the same individuals, and IR content was determined by ELISA.
A) The average total IR content was significantly higher in the malignant tissues than in the corresponding normal tissues. Number of examined specimens is indicated within brackets.
B) IR-A and IR-B expression in different normal or malignant human tissues. IR isoform expression was determined by RT-PCR. Relative abundance of IR-A (median value) was significantly higher in cancer tissue than in normal tissue. Breast: 73 vs. 43; Lung 53 vs. 39; Colon 68 vs. 35; Thyroid: normal tissue = 44; papillary DTC = 53; follicular DTC = 56; UTC = 70.5 (Frasca et al. 1999; Vella, et al. 2002).

Fig. 4

The “Paradox” of insulin resistance. In normoinsulinemic subjects (top) typical target tissues respond to insulin mainly with metabolic effects via the activation of the PI-3 kinase pathway. In contrast, in hyperinsulinemic subjects (bottom) IR signaling may be attenuated for the metabolic branch, but not for the mitogenic branch. Indeed, studies in insulin resistant PCO subjects described several insulin signaling abnormalities, including IRS-1 phosphorylation in Serine-312 (yellow) leading to inhibition of PI-3 kinase recruitment and activation. This abnormal IRS-1 phosphorylation represents a negative feedback loop for attenuating metabolic activity in response to hyperinsulinemia and is consequent to mTOR overactivation.

In contrast to the metabolic attenuation, ERK activation is not attenuated, but rather increased by hyperinsulinemia. The mitogenic branch overactivation has been ascribed to increased IRS-2 expression leading to unaffected or increased Grb2 recruitment, increased Raf-1 expression and, as a consequence, increased ERK activation. This, in turn, further increases Serine-312 IRS-1 phosphorylation (Corbould, et al. 2006).
This implies that insulin resistance mainly involves the metabolic but not mitogenic effects of insulin. This unbalanced IR signaling may have different effects in different tissues, depending on the cell predominant enzymatic machinery: it may cause impaired glucose homeostasis in typical insulin target tissue like liver, muscle and adipose tissue, while it will result in increased cell proliferation in other tissues, including ovary and cancer cells.

Fig. 5

Schematic representation of insulin and IGF-IR signaling and inhibition steps. IR and IGF-IR share a very similar signaling pathway, which can be schematically represented by two main branches: the mitogenic pathway (Ras/Raf/Mek/Erk) and the metabolic pathway (PI3k/Akt). The metabolic pathway can be further subdivided into two sub-pathways: the mTOR pathway which, although mainly metabolic, is also in part mitogenic and the Foxo pathway, which is mainly involved in cell survival in response to nutrient availability. Given the complexity of this signaling, it is very difficult to target a specific pathway and function. Indeed, inhibitors aimed at targeting the mitogenic and survival pathways have also effects on the metabolic pathways, resulting in insulin resistance and hyperglycemia.

Inhibitors are represented in black:

- CP-751871, humanized anti-IGF-IR antibody;
- AQIP, IGF-IR and IR tyrosine kinase inhibitor;
- PX-866, PI3-kinase inhibitor;
- Triciribine, Akt inhibitor;
- CCI-779, mTOR inhibitor
Fig. 6

Schematic representation of a possible hypothesis explaining the effect of Nilotinib (Abl inhibitor AMN107) on IR signaling and glucose homeostasis

c-Abl tyrosine kinase is activated in response to insulin stimulation. Activation of c-Abl results in decreased FAK phosphorylation and, as a consequence, increased Akt phosphorylation and decreased ERK phosphorylation, thus enhancing insulin metabolic effects and decreasing insulin mitogenic effect. In the presence of the c-Abl inhibitor AMN107, the opposite occurs: insulin stimulation results in increased ERK activation and decreased Akt phosphorylation and, as a consequence, decreased metabolic activity. The reasons why different Abl inhibitors (Imatinib Mesylate and Nilotinib) have different metabolic effects are not understood.

(↓) stimulation, (⊥) inhibition.
<table>
<thead>
<tr>
<th>Cancer</th>
<th>RR (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LIVER (El-Serag et al. 2006)</td>
<td>2.50 (1.8-3.5)</td>
</tr>
<tr>
<td></td>
<td>2.51 (1.9-3.2)</td>
</tr>
<tr>
<td>PANCREAS (Huxley et al. 2005)</td>
<td>1.94 (1.53-2.46)</td>
</tr>
<tr>
<td></td>
<td>1.73 (1.59-1.88)</td>
</tr>
<tr>
<td>KIDNEY (*) (Lindblad et al. 1999, Washio et al. 2007)</td>
<td>1.50 (1.30-1.70)</td>
</tr>
<tr>
<td></td>
<td>2.22 (1.04-4.70)</td>
</tr>
<tr>
<td>ENDOMETRIUM (Friberg et al. 2007)</td>
<td>2.22 (1.80-2.74)</td>
</tr>
<tr>
<td></td>
<td>1.62 (1.21-2.16)</td>
</tr>
<tr>
<td>COLON-RECTUM (Larsson et al. 2005)</td>
<td>1.36 (1.23-1.50)</td>
</tr>
<tr>
<td></td>
<td>1.29 (1.16-1.43)</td>
</tr>
<tr>
<td>BLADDER (Larsson et al. 2006)</td>
<td>1.37 (1.04-1.80)</td>
</tr>
<tr>
<td></td>
<td>1.43 (1.18-1.74)</td>
</tr>
<tr>
<td>NON-HODGKIN’S LYMPHOMA (Mitri et al. 2008)</td>
<td>1.41 (1.07-1.88)</td>
</tr>
<tr>
<td></td>
<td>1.12 (0.95-1.31)</td>
</tr>
<tr>
<td>BREAST (Larsson et al. 2007)</td>
<td>1.18 (1.05-1.32)</td>
</tr>
<tr>
<td></td>
<td>1.20 (1.11-1.30)</td>
</tr>
<tr>
<td>PROSTATE (Kasper & Giovannucci 2006)</td>
<td>0.89 (0.72-1.11)</td>
</tr>
<tr>
<td></td>
<td>0.81 (0.71-0.92)</td>
</tr>
</tbody>
</table>

(* Data on kidney cancer were not obtained from meta-analysis)
Table 2

Oral Hypoglycemic Agents (OHA) used to treat Type 2 Diabetes Mellitus

<table>
<thead>
<tr>
<th>Pharmacological class</th>
<th>Pharmacological compound</th>
<th>Mechanism of action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biguanides</td>
<td>Metformin</td>
<td>Insulin sensitizer (reduces insulin resistance preeminently at hepatic level)</td>
</tr>
<tr>
<td>Thiazolidinediones</td>
<td>Rosiglitazone</td>
<td>Insulin sensitizers (reduce insulin resistance preeminently at muscle and fat level)</td>
</tr>
<tr>
<td>(Glitazones)</td>
<td>Pioglitazone</td>
<td></td>
</tr>
<tr>
<td>Sulphonylureas</td>
<td>Glipizide</td>
<td>Secretagogues (stimulate insulin secretion)</td>
</tr>
<tr>
<td></td>
<td>Gliclazide</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Glyburide</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gliquidone</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Glyclopyramide</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Glimepiride</td>
<td></td>
</tr>
<tr>
<td>Meglitinides</td>
<td>Repaglinide</td>
<td>Short-term secretagogues (stimulate insulin secretion)</td>
</tr>
<tr>
<td></td>
<td>Nateglinide</td>
<td></td>
</tr>
<tr>
<td>Alpha-glucosidase inhibitors</td>
<td>Acarbose</td>
<td>Reduces carbohydrate absorption</td>
</tr>
</tbody>
</table>

GLP-1 analogs and gliptines (Dpp-4 inhibitors) have been introduced recently for diabetes treatment and no data are available on their potential influence on the cancer risk in diabetic patients
Figure 1

A

Tumor growth after 6 wks (surface cm²)

Control

glucose 10%

insulin

2.5 U/D Kg

glucose 10% + insulin

B

Tumor size (surface cm²)

Control

alloxan diabetes

109x145mm (600 x 600 DPI)
Figure 2

188x123mm (600 x 600 DPI)
Figure 3

A

Insulin receptor expression in normal and cancer tissues

- Breast (12)
- Lung (6)
- Colon (10)

B

Insulin receptor isoform expression in normal and cancer tissues

149x200mm (600 x 600 DPI)
Figure 5

119x90mm (300 x 300 DPI)