Anaplastic Thyroid Cancer: Molecular Pathogenesis and Emerging Therapies (Review)

Robert C. Smallridge, Laura A. Marlow, John A. Copland

1 Department of Internal Medicine, Division of Endocrinology, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224
2 Department of Cancer Biology, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224

Correspondence and reprints:
Robert C. Smallridge, M.D., Professor of Medicine, Mayo Clinic, 4500 San Pablo Road, Jacksonville, Florida 32224; Phone: 904-953-2224; Fax: 904-953-0272;
Email: smallridge.robert@mayo.edu

Running head: Anaplastic Thyroid Cancer

Word count: 9766

Key words: Anaplastic; thyroid cancer; microarray; microRNAs; cytogenetics; clinical trials, genetic mutations, therapeutics, preclinical animal model
Abstract

Anaplastic thyroid cancer (ATC) is a rare malignancy. While external beam radiation therapy has improved locoregional control, the median survival of approximately four months has not changed in more than half a century due to uncontrolled systemic metastases. The objective of this study was to review the literature in order to identify potential new strategies for treating this highly lethal cancer. PubMed searches were the principal source of articles reviewed. The molecular pathogenesis of ATC includes mutations in BRAF, RAS, β-catenin, PIK3CA, p53, AXIN, PTEN and APC genes, and chromosomal abnormalities are common. Several microarray studies have identified genes and pathways preferentially affected, and dysregulated microRNA profiles differ from differentiated thyroid cancers. Numerous proteins involving transcription factors, signaling pathways, mitosis, proliferation, cell cycle, apoptosis, adhesion, migration, epigenetics, and protein degradation are affected. A variety of agents have been successful in controlling ATC cell growth both in vitro and in nude mice xenografts. While many of these new compounds are in cancer clinical trials, there are few studies being conducted in ATC. With the recent increased knowledge of the many critical genes and proteins affected in anaplastic thyroid cancer, and the extensive array of targeted therapies being developed for cancer patients, there are new opportunities to design clinical trials based upon tumor molecular profiling and preclinical studies of potentially synergistic combinatorial novel therapies.
Incidence

Thyroid cancers, while uncommon, are increasing in prevalence in this country due, at least in part, to earlier detection from imaging. In 2008, there are estimated to be 37,340 new cases, with 1590 deaths (Jemal et al., 2008). Anaplastic thyroid carcinomas (ATC) are estimated to comprise 1-2% of thyroid malignancies. Unfortunately, their rapid onset and fulminant course have not altered their detection or outcomes. This review will analyze their molecular pathogenesis, the results of preclinical studies and clinical management, and discuss possible new treatment strategies.

Molecular pathogenesis

Mutations (Table 1)

More than 90% of all thyroid cancers derive from the thyroid follicular cell, including papillary (PTC), follicular (FC), or Hurthle cell. Anaplastic thyroid cancer may derive de novo or from pre-existing PTC or FC. A small number of gene mutations have been identified, and there appears to be a progression in mutations acquired during dedifferentiation. Several mutations occurring in PTC (e.g. Ras and BRAF) are also seen in ATC, suggesting these are early events (Nikiforov, 2004). Late mutations include p53, β-catenin, and PIK3CA, suggesting that one or more of these mutations contributes to the extremely aggressive behavior of ATC. In contrast, the Ret/PTC rearrangements found in childhood and radiation-induced PTCs, and the PAX8/PPAR-γ fusion protein detected in follicular carcinoma, are not observed in poorly differentiated and anaplastic thyroid cancers (Nikiforov, 2004).
The RAS family of oncogenes regulates two important signaling pathways in thyroid cancer, the RAS-Raf-MEK-ERK and the PI3K/Akt pathways. Ras mutations occur in both benign and malignant thyroid tumors (Fagin et al., 1993), with variable frequency in ATCs. Frequencies range from 6% up to half of cases (Costa et al., 2008, Fukushima et al., 2003, Garcia-Rostan et al., 2003, Hou et al., 2007, Liu Z. et al., 2008, Nikiforov, 2004, Quiros et al., 2005, Santarpia et al., 2008).

BRAF

BRAF is a serine/threonine kinase involved in cell proliferation. The most common mutation in papillary thyroid cancer is BRAF. It, too, is highly variable in ATC, ranging from 0-50%, due in part to small sample sizes and different laboratory methodologies. When ATCs with a papillary component were examined, this mutation was observed in both the differentiated and undifferentiated regions (Begum et al., 2004, Soares et al., 2004, Takano et al., 2007a).

p53

The p53 tumor suppressor gene (chromosome 17p) increases the cyclin kinase inhibitor, p21, promoting cell cycle arrest at G1/S, but is commonly mutated in cancer. Mutations impair p53 transcriptional activity, and occur in 55% of ATCs (Donghi et al., 1993, Fagin et al., 1993, Nikiforov, 2004, Zedenius et al., 1996, Zou et al., 1993). Elevated levels can also be detected by immunohistochemistry (IHC) (Lam et al., 2000, Quiros et al., 2005), which may reflect altered function without mutation (Malaguarnera et al., 2007, Wreesmann & Singh, 2008). Boltze et al. (2002) examined a common polymorphism (codon 72, exon 4) of the p53 gene. Homozygous proline was present in 100% of 22 ATC patient tumors, but in no benign nodules or differentiated thyroid cancers, suggesting this polymorphism may be a risk factor.
Wnt pathway genes

The β-catenin gene is involved in Wnt signaling and cell-cell adhesion. Both mutations and abnormal nuclear localization are seen in malignancies. Mutations were detected in 61% of 31 ATC cases (with nuclear localization in half with mutations) (Garcia-Rostan et al., 1999), while abnormalities were detected in 32% of poorly differentiated (Garcia-Rostan et al., 2001), but no papillary or follicular thyroid cancers (Garcia-Rostan et al., 2001, Miyake et al., 2001).

In contrast, Rocha et al. (2003) evaluated 17 poorly differentiated (but no anaplastic) thyroid cancers. They found loss of E-cadherin membrane expression, but no nuclear localization of β-catenin and no mutations in either gene. Kurihara et al. (2004) found β-catenin mutations in only 1 of 22 patients, but nuclear and/or cytoplasmic staining was common. Axin 1 (chromosome 16p13.3) is a scaffold protein acting as a tumor suppressor in the Wnt pathway. Kurihara et al. (2004) found frequent abnormalities with 41 mutations in 82% of 22 ATC patient samples. In contrast, adenomatous polyposis coli (APC), which complexes with Axin, is mutated only infrequently (Kurihara et al., 2004).

PIK3CA

PI3K is a kinase that phosphorylates Akt isoforms. They, in turn, phosphorylate substrates involved in cell growth and survival. PIK3CA encodes a catalytic subunit of PI3K (Santarpia et al., 2008). PIK3CA (located on 3q26.3) was mutated in 12-23% of ATC cases (Garcia-Rostan et al., 2005, Hou et al., 2007, Liu Z. et al., 2008, Santarpia et al., 2008) and copy gains occurred in 38-61% (Hou et al., 2007, Liu Z. et al., 2008, Santarpia et al., 2008).

Mutations were infrequently present in follicular (6-13%) or papillary (1-3%) tumors (Garcia-Rostan et al., 2005, Hou et al., 2007, Liu Z. et al., 2008, Wang Y. et al., 2007). Akt was activated in most ATC cases (85-93%) (Garcia-Rostan et al., 2005, Santarpia et al., 2008) and ERK was activated in 65% (Santarpia et al., 2008). Phosphatase and tensin homology encoding
chromosome 10 (PTEN) negatively regulates the PI3K pathway and was mutated in 17% of 48 cases (Liu Z. et al., 2008).

RET

RET, a proto-oncogene which encodes a receptor tyrosine kinase, is mutated in familial medullary thyroid carcinoma, and RET/PTC rearrangements occur in PTC. RET was amplified in seven ATCs (Nakashima et al., 2007), and three had increased p53 by IHC, suggesting genomic instability from aberrant p53 may have led to the RET abnormality.

Cytogenetic analyses

Cytogenetic metaphase analysis of ATC was reported more than 20 years ago (Mark et al., 1987), while comparative genomic hybridization (CGH) has permitted detection of deletions or amplifications in chromosomal regions not identified by conventional cytogenetics or FISH analysis (Inazawa et al., 2004). Modification using array-CGH (a-CGH) has further improved genome-wide detection of regions that may harbor cancer associated genes (Inazawa et al., 2004). While the methodology doesn’t identify specific genes, it locates regions of chromosomal instability for more focused investigations (Pinkel & Albertson, 2005).

The role of a-CGH in clinical practice, whether whole-genome screening or targeted arrays, is currently being discussed (Bejjani & Shaffer, 2006, Done, 2006, Veltman & de Vries, 2006). While copy number variations are common and can potentially confound data interpretation (Gunn et al., 2007), the potential to integrate a-CGH results with histopathology and other molecular markers, and to relate the laboratory findings with patient diagnosis, prognosis, and therapy, will bring an individualized approach to cancer therapy in clinical practice (Climent et al., 2007).
Chromosomal aberrations in ATC (Table 2)

Mark et al. (1987) performed metaphase analyses on five ATC patients; three had 10q aberrations and two had 3p25 abnormalities. RET resides on 10q11.2 and PTEN on 10q23.3, while hypoploidy of 3p is common in follicular and Hürthle cell cancers. In two patients with complex clonal karyotypes, abnormalities were detected in 16 separate chromosomes, with both tumors having clones with losses of chromosome 8 and both sex chromosomes (Jenkins et al., 1990).

In the first report of CGH in ATC patients, DNA copy number changes were found in eleven of 13; gains were noted in 10 of 13, deletions in 3/13, both gains and deletions in 2, and chromosome deletion in one. Overall, there were 27 gains and 5 deletions. Common gains included chromosomes 7p22-pter, 8q22-qter and 9q34-qter, regions that harbor the PDGR-α, myc, and ABL and VAVZ genes, respectively (Hemmer et al., 1999).

CGH studies in 9 cases of ATC showed five had giant cell and four had spindle cell histology, with none having antecedent differentiated thyroid cancer (Wilkens et al., 2000). The most common gains or losses occurred in chromosomes 8p and 8q, and amplification of 5p. Fourteen additional chromosomes had imbalances in one or two of the tumors, and two cell lines had similar findings. The authors were uncertain of the role of chromosome 5 and 8 aberrations in ATC, but noted that p45^{skp2} and c-myc genes resided on 5p and 8q24 (Wilkens et al., 2000).

Kitamura and colleagues (2000) detected allelic losses in 16 of 21 ATCs studied, including loss of 22q in 38%. CBX7, a putative tumor suppressor, resides on 22q13.1 and is markedly under expressed in ATC (Pallante et al., 2008). Loss of 22q has been shown by others (Table 2).

CGH was performed on 15 well differentiated, 12 poorly differentiated, and 15 ATC samples to look for changes associated with tumor progression (Wreesmann et al., 2002). Both frequency and number of CGH abnormalities were identified in more undifferentiated tumors.
All three tumor types had chromosomal gains at 5p15 (telomerase reverse transcriptase location); 5q11-13; 19p; 19q (the zinc finger TF ZN331 on 19q13.3, a frequent break point, is common in follicular adenomas and often involved in a translocation with 5q13) and losses at 8p. The poorly differentiated and anaplastic cancers had additional gains at 1p34-36 (stathmin location); 6p21 (location of p38α- and δ MAP kinases); 9q34; 17q25 (survivin location), 20q, and losses at 1p11-p31; 2q32-33; 4q11-13; 6q21; 13q21-31. Unique to ATC were gains at 3p13-14 and 11q13 [CCND1 (cyclin D1) and fra-1 location], and losses at 5q11-31. The authors cited a number of potentially affected genes identified in regions of chromosomes 1p, 3p, 5q, 11q, 13q, 17q, 20q including HTIF1, Wnt5A, APC, Wnt 11, LGALS3BP (galectin-3 binding protein; mediates cell-cell and cell-matrix interactions), SIR-T8 (a proto-oncogene of unknown function), MMP-9, MMP-24, LAMBA5, and syndecan-4 (complexes with CXCR4).

Miura et al. (2003) performed CGH on 10 ATC samples, six associated with papillary and two with follicular thyroid cancer. Five patients had 24 cytogenetic abnormalities; 22 were gains, 2 were losses. The most frequent aberration was a gain in 1q (common in many cancers) in 3 of 10 cases. The two losses were in 9q22.3-q32 and 3p12.2-p21.3, a region also detected by others (Wreesmann et al., 2002). The authors were unable to show any correlation of the CGH aberration with survival or other clinical parameters (Miura et al., 2003).

Rodrigues et al. (2004) examined 7 ATCs; all had chromosomal imbalances. Three were gains at 20p and 20q, and losses of Xp in 6 cases, gains at 3q and 5p in five cases. 7q31 was often deleted. Important genes included PI3K, BCL-6 (codes Zn finger protein that represses transcription) and SST at 3q, the invasion and metastases genes (MMP-9 and MMP-24), cell cycle and check point gene (STK15) at 20q and Fra7G at 7q.
Three recent reports examined ATC cell lines by array-CGH. Rodrigues et al. (2007) found high level amplification at 3q24, 5p, 7p (EGFR location), 7q (MET and B-RAF location), 12p (K-RAS location), 14q, and 20. Lee et al. (2007) tested 2 novel and 6 established ATC cell lines. Gaines and losses were prevalent throughout with high level amplification at 1p, 8q (myc location), 9q, 11q and 20q. FISH analysis showed gains in 7 of 8 cell lines for UBCH10 (20q13.12), a gene overexpressed in ATC (Pallante et al., 2005). Lee et al. (2008) performed array-CGH to analyze for genome-wide copy number changes in 27 ATC tissues. An average of 44 copy number changes were detected in each tumor. Frequent gains were noted at 11q13 [site of CCND1 (cyclin D1), which was expressed in 18 of 27 tissues and also fra-1], 16p11.2; 20q11.2; and 20q13.12 (UBCH10 location). Loss of the CDKN2A locus on 9p21.3 was confirmed by finding undetectable p16 protein in 24 of 27 ATC tissues (Lee et al., 2008).

Liu et al. (2008) analyzed up to 51 ATCs for copy number gains in receptor tyrosine kinase genes and in PI3K and BRAF pathway genes. Copy number gains were detected in EGFR and VEGFR1 (46%); PDGFRβ, PIK3Cα and PIK3Cb (38%); PDGFRα (24%); KIT (22%); PDK1 (20%); AkT1 (19%); VEGFR2 (17%); and MET (12%). Overall, at least one copy number gain was present in 80.4% of cases (Liu Z. et al., 2008).

These studies emphasize that ATCs have a high degree of numeric and structural genomic disarray. These abnormalities likely result in substantial gene expression changes in many genes. This high degree of disarray and the rarity of these tumors makes it difficult to determine which targets of instability are selected for or convey growth advantages.

MicroRNA (Table 3)

A new level of regulation of cell growth and survival has emerged with the recent discovery of microRNAs. These molecules are small (~ 22 nucleotides), single stranded, non-
coding RNAs. There are an estimated 300-1000 microRNAs, each of which may bind to several hundred gene targets. Most often, they appear to repress gene expression post-transcriptionally (so that protein, not RNA, levels are reduced) (Esquela-Kerscher & Slack, 2006), but they can also affect mRNA degradation (Volinia et al., 2006). MicroRNAs can act as oncogenes or tumor suppressor genes and, given their pleiotropic effects, can perform both functions in the same cell (Calin & Croce, 2006, Calin et al., 2004, Esquela-Kerscher & Slack, 2006).

MicroRNA (miR) expression can be altered in several ways, such as abnormalities in their large RNA precursors, their tendency to reside in cancer-associated genomic regions, or by epigenetic silencing (Calin & Croce, 2006, Calin et al., 2004, Meng F. et al., 2006, Saito & Jones, 2006, Zhang L. & Coukos, 2006). MicroRNAs play an important role in oncogenesis, and expression profiles or fingerprints may improve the specificity of diagnosis, therapy, and prognosis (Blower et al., 2008, Calin & Croce, 2006, Lu et al., 2005, Volinia et al., 2006).

MicroRNAs may become therapeutic targets themselves (Jeyaseelan et al., 2007), and both overexpression and inhibition of their activity has influenced cellular growth and tumor responses to other chemotherapy agents (Blower et al., 2008, Meng F. et al., 2006). Downstream targets of these miRs are known in some instances, and manipulation of miR expression can directly affect target genes. For example, miR-21 is overexpressed in cholangiocarcinoma, the miR-21 precursor reduces PTEN expression, and inhibition of miR-21 reduces the p85 subunit of PI-3K (Meng F. et al., 2006). Similarly, miR-21 is overexpressed in glioblastomas, and its inhibition increases caspases and apoptosis (Chan et al., 2005).

While most studies in cancer have shown that miRs are underexpressed, overexpression may also contribute to oncogenesis or tumor progression, as in thyroid malignancies. Most thyroid cancers derive from the follicular cell. He et al. (2005) demonstrated that miRs are
upregulated in papillary thyroid carcinoma (PTC). The most highly expressed were miRs -221, -222, and -146. Other miRs overexpressed > 2-fold were -21, -220, -181, and -155. Underexpressed miRs included -138, -219, -26a, and -345. Pallante et al. (2005) identified five overexpressed miRs and suggested that -221, -222 and -181b could be a signature for PTC. The observation on miR-221 and -222 was extended by showing that forced overexpression would reduce p27\(^{kip1}\) protein and increase G1 to S phase transition (Visone et al., 2007a). These observations suggest that miR-221 and -222 could be therapeutic targets in PTC. Four microRNAs (-197, -346, -192, and -328) were found overexpressed in FTC (Weber et al., 2006). Four miRs (-30d, -125b, -26a, 30a-5p) were underexpressed in anaplastic thyroid cancer, but not in PTC (Visone et al., 2007b). Both miR-26a and -125b may target HMGA1 and HMGA2, two proteins involved in thyroid cell transformation (Berlingieri et al., 2002). These authors also showed that miR-138 was reduced, and miR-222 (increased in PTC) also was overexpressed (1.98 fold) in ATC. Mitomo et al. (2008) showed that miRs-21, -146b, -221, -222 were upregulated in both ATC and PTC. MiR-21 targets E2F (involved in cell cycle and apoptosis) and inhibits PTEN. Downregulated miRs included -26a, -138, -219, and -345. They also found that hTERT, a possible gene target for miR-138, was reduced and experimentally, hTERT protein could be reduced by overexpressing miR-138. The miR-17-92 cluster of seven miRNAs as well as miR-106a and -106b were overexpressed in cell lines, and in 3 of 6 ATC patient samples, miR-17-3p and -17-5p were overexpressed (Takakura et al., 2008). Antisense inhibitors to miRs 17-3p, -17-5p, and -19a all inhibited cell growth, suggesting an oncogenic role for these miRs. Other miRs in the cluster (i.e. miR-19a and -19b) have PTEN as a target, and miR-106a and -106b have E2F1 as a target.
Thus, there are multiple potential therapeutic targets in the miR-17-92 cluster (Takakura et al., 2008).

Although microRNA research is still young, it is gratifying that studies of miRs expression and function already exist for three principal types of thyroid cancer. The results suggest that each has several miRs distinct for that particular type of thyroid cancer. Thus, studies of miRs in thyroid oncogenesis hold promise to improve the evaluation and management of these tumors.

Functional genomics

Gene microarray

Gene expression microarrays have provided valuable insights into the molecular pathogenesis of thyroid cancer. Numerous studies have identified multiple over- and underexpressed genes involved in the regulation of critical cell functions (e.g. oncogenes, tumor suppressor genes, signaling pathways, transcription factors, cell adhesion, thyroid functions, invasion, chemokines, etc.) (Riesco-Eizaguirre & Santisteban, 2007). Various authors have employed this technology to identify differences among thyroid tumor types (Eszlinger et al., 2007, Finley et al., 2004, Frattini et al., 2004, Giordano et al., 2005, Mazzanti et al., 2004, Melillo et al., 2005, Wreesmann et al., 2004). In a meta-review of 21 studies, of 1785 genes differentially expressed, there were 39 felt to be most reliable among overlap comparisons. Only one of the studies involved anaplastic patients (Griffith et al., 2006).

Only a few studies have examined gene expression by microarray in ATC cell lines or patient samples. Onda et al. (2004b) utilized 11 ATC cell lines and 10 patient samples. They found 31 genes over- and 56 genes under-expressed in cell lines. Functions affected pertinent to cancer cells include: Rab proteins localization (GD12), cell structure and endocytosis (detrin),
microtubules (stathmin), and RaF inhibition (PBP) (Onda et al., 2004b). Salvatore et al. (2007) did a microarray screen on five ATC samples, and validation on 22. They found 114 genes that distinguished ATC and PTC samples from normal thyroid, and 54 cell cycle progression and chromosome instability related genes up-regulated in ATC. Montero-Conde et al. (2008) examined 7 ATC, 6 poorly differentiated, and 31 well-differentiated thyroid cancer patients by microarray. Pathways preferentially dysregulated in PDTC and ATC tissues were MAPK, cell cycle, focal adhesion, cytoskeleton, and TGF-β. Pallante et al. (2008) detected a marked down-regulation of CBX7 expression by microarray and showed that mRNA for CDKN2A/p16, a tumor suppressor and target of CBX7, was highly overexpressed.

Proteins expression

While identifying altered expression of genes gives important clues, assessment of proteins expression yields more direct evidence of cellular functions which are dysregulated in cancer cells. Effects manifest themselves at the level of oncogene and tumor suppressor gene functions, receptors and signaling pathways, nuclear and organelle events, cell cycle, cell division, cellular death, adhesion and migration. All of these functions have been studied to some degree in ATC, and these observations proffer diagnostic and therapeutic opportunities (Table 4).

Transcription factors

Thyroid transcription factors (TTF-1; TTF-2) and paired box gene 8 (Pax 8) regulate expression of thyroid specific proteins including thyroglobulin, TSH-R, thyroid peroxidase, and \(\text{Na}^+ / \text{I}^- \) symporter. Their protein expression becomes reduced or absent as follicular cell de-differentiation progresses. The mRNAs for TTF-1 (Ros et al., 1999, Takano et al., 2007b), TTF-2 (Sequeira et al., 2001), and Pax 8 (Ros et al., 1999) are also reduced or absent in ATCs.
Peroxisome proliferator-activated receptor gamma (PPAR-γ) is a transcription factor affecting adipogenesis and differentiation. PPAR-γ agonists have antitumor activity in a variety of malignancies (Copland et al., 2006b), and inhibition of PPAR-γ function contributes to follicular thyroid cancer indicating tumor suppressive activity of PPAR-γ (Kato et al., 2006, Kroll et al., 2000). ATC cell lines express functionally active nuclear PPAR-γ protein (Aiello et al., 2006, Copland et al., 2006b, Hayashi et al., 2004) and the protein is present in at least 84% of patient ATC samples (unpublished observations).

Hepatocyte nuclear factor-1α (HNF-1α) plays a role in glucose metabolism, and may also influence carcinogenesis. Both HNF-1α mRNA and protein were present in ATC cell lines. Transcripts were also present in most ATC but not PTC tissue samples, suggesting a role for HNF-1α in more aggressive thyroid cancer (Xu J. et al., 2008).

The growth promoting transcriptional factor E2F1 is regulated by the tumor suppressor retinoblastoma gene, and its mRNA was up-regulated in eleven ATC cell lines, as well as most PTC lines (Onda et al., 2004a). In contrast, transcription elongation factor A (S11) like 4 (TCEAL4) mRNA was down-regulated in both ATC cell lines and tissues (Akaishi et al., 2006). Id (inhibitor of DNA binding) proteins have a dominant negative effect on gene transcription and enhance cell proliferation. Up-regulation appears early and is detected in follicular adenomas, but the highest percentage was detected in ATC tissues (Kebebew et al., 2004).

The Y-box binding protein (YB-1) interacts with inverted CCAAT boxes, and was overexpressed in 27 of 28 ATC patients (Ito et al., 2003b). The CCAAT box is present in several important cancer promoting genes including the EGF-R, multi-drug resistance 1, proliferating cell nuclear antigen, and DNA topoisomerase 11 alpha (Ito et al., 2003b). The high mobility group I (Y) gene transcribes nuclear proteins, and is overexpressed in ATC cell lines.
HMG1 proteins may suppress expression of CBX7, a protein which represses gene transcription and growth rate (Pallante et al., 2008). The fra-1 protein, a transcription factor in the AP-1 complex that is involved in cell transformation, is expressed in thyroid adenomas and in differentiated as well as anaplastic thyroid cancers (Chiappetta et al., 2000), while c-myc is overexpressed in 59% of 22 ATC tissues (Kurihara et al., 2004).

Signaling pathways

The EGF-receptor is a cell surface receptor which activates several intracellular tyrosine kinase regulated pathways (e.g. MAPK; PI3K) involved in proliferation, migration, etc. in many cancers. It is not detectable in normal thyroid tissues, and rarely in papillary thyroid carcinoma (Elliott et al., 2008, Schiff et al., 2004). However, it is detected in 58 to 87% of anaplastic tissues (Elliott et al., 2008, Ensinger et al., 2004, Schiff et al., 2004, Wiseman et al., 2007b) and in cell lines (Schiff et al., 2004).

Chemokine receptors also activate multiple downstream signaling pathways, including PI3K. CXCR4 is overexpressed in many cancers, and recently has been shown to be overexpressed in both ATC cell lines and patient samples (De Falco et al., 2007). A source of chemokines may be their paracrine secretion by tumor-associated microphages, present in 19 of 20 ATC samples (Ryder et al., 2008).

The Ras-Raf-Mek-Erk and PI3K pathways are both involved in the pathogenesis of papillary and follicular thyroid cancers (Shinohara et al., 2007), and mutation in one of the genes regulating either pathway in ATC was identified in 50% of 36 cases (Santarpia et al., 2008). Both ERK and AKT proteins were phosphorylated and, thus, activated in 65-85% of samples, suggesting that these molecules may be important therapeutic targets (Santarpia et al., 2008).

Mitosis
Aurora kinases play an important role in cell division, and dysregulation may result in aneuploidy. Aurora B is overexpressed in ATC cell lines (Sorrentino et al., 2005, Ulisse et al., 2006), and patient samples had a marked increase when compared to normal thyroid tissue or PTCs (Ulisse et al., 2006). Like aurora B, aurora A is overexpressed at both the mRNA and protein levels in ATC cell lines, while Aurora C is increased only at the protein level (Ulisse et al., 2006). Aurora A interacts with RAS and p53 (Ulisse et al., 2006), both of which are altered in ATC. Aurora A also phosphorylates TACC 3 protein. Either over- or underexpression of TACC3 can alter mitosis. Its expression is reduced at the mRNA and protein levels in PTC, FTC, and ATC cell lines, but the lowest level was in anaplastic cells (Ulisse et al., 2007).

Microtubules play an important role in mitosis, and overexpression of k\(\alpha\)1 tubulin mRNA has been reported in ATC, but not other thyroid malignancies (Takano et al., 2001), and mitotic spindle assembly checkpoint genes mRNAs are also overexpressed (Wada et al., 2008). These observations provide some rationale for the use of microtubule-inhibitors in ATC (Ain et al., 2000). Topoisomerase II-\(\alpha\) is an enzyme necessary for chromatin segregation, and it was overexpressed in 92% of ATC samples, compared to 42% of differentiated thyroid cancers (Wiseman et al., 2007a).

Proliferation

The Ki67 nuclear antigen has been shown to reflect cellular proliferation rate, with a higher level detected in more aggressive tumors. A high labeling index, as seen in ATC and poorly differentiated thyroid patients, correlated with persistent disease or death (Tallini et al., 1999). Ki-67 positive cells were detected in only 3.9% of 68 PTC patients but in 46.5% of 28 ATCs in one study (Ito et al., 2003b) and in 5% of well-differentiated PTC patients, but in 49% of poorly differentiated and 82% of anaplastic patients in another (Saltman et al., 2006). MIB-1, which binds to Ki-67, was detected in 100% of ATC samples but only 25% of differentiated
thyroid cancers (Wiseman et al., 2007a). OEATC-1 and RbAp48 are two proteins overexpressed in ATC cells and which also influence proliferation (Mizutani et al., 2005, Pacifico et al., 2007)

Cell cycle

Cell cycle regulating genes and proteins [cyclins, cyclin-dependent kinases (CdKs), and CdK inhibitors] play a pivotal role in cell proliferation, with upregulation of CdKs, downregulation of CdKs, or both being frequent contributors to carcinogenesis.

Immunohistochemistry performed on a tissue microarray of 31 ATC samples with 31 molecular markers showed the two most overexpressed proteins were cyclin D1 (100%) and cyclin E (93%) (Wiseman et al., 2007a), confirming a prior report of cyclin D1 overexpression in 77% of 13 ATCs (Wang S. et al., 2000). Kurihara et al. (2004) found increased cyclin D1 in only 27% of 22 tissues, but Lee et al. (2008) also found cyclin D1 protein in 18 of 27 (67%) ATC tumors. Cyclin D3 was also overexpressed in an ATC cell line (Baldassarre et al., 1999). These authors also showed that p27 protein expression was lost in one ATC cell line and reduced in 6 of 8 ATC tissues (compared to ~one-third of PTC and FTC tissues). Normally in the nucleus, p27 was mislocalized to and inactive in the cytoplasm, and correlated with cyclin D3 overexpression (Baldassarre et al., 1999). Tallini et al. (1999) studied well-differentiated, poorly-differentiated, and anaplastic tissues, and found a correlation of low $p27^{kip1}$ with larger tumor size, extrathyroidal extension and survival. Saltman et al. (2006) noted a reduction in several CdKs in more undifferentiated tumors. P21 was detected in 40% of well-differentiated PTCs, only 7% of poorly differentiated thyroid cancers and 0% of ATCs. For p27, the findings were 13%, 8%, and 5%, respectively. In contrast to others, they observed cyclin D1 positivity in 15%, 7%, and 0% of cases as tumors became less differentiated.

Apoptosis
The inhibitors of apoptosis (IAPs) proteins prevent cells from undergoing apoptosis, and their presence may predict more resistant tumors. One of the IAPs, survivin, was present in 9 of 63 (14%) of well-differentiated, 11 of 29 (38%) poorly differentiated, and 17 of 19 (89%) anaplastic thyroid carcinomas (Ito et al., 2003a). ATC cell lines express several IAPs, including survivin, c-IAP1, c-IAP2, and XIAP (Tirro et al., 2006). In contrast, bcl-2 is a proapoptotic protein. Its expression correlated inversely with differentiation (Saltman et al., 2006, Wiseman et al., 2007a). Another protein, DJ-1, protects cells from toxic stresses and higher levels promote insensitivity to TRAIL-induced apoptosis. DJ-1 is expressed in ATC cell lines, and also in more than 88% of follicular and anaplastic thyroid tissues (Zhang Hai-Yan et al., 2008). NF-κB, a protein that upregulates antiapoptotic genes, is also expressed (Meng Z. et al., 2008, Starenki et al., 2004). The small heat shock protein, alphaB-crystallin, is regulated by the CRYAB gene and is markedly reduced or absent in ATC tissues and cell line (Mineva et al., 2005). Moreover, the transcription factor, TFCP2L1, involved in CRYAB expression, is down-regulated in ATC (Mineva et al., 2005). In contrast, neutrophil gelatinase-associated lipocalin (NGAL), an NF-κB target, is increased in ATC tissues (Iannetti et al., 2008).

Adhesion

Adhesion receptors include cadherins, integrins, selectins, and the immunoglobulin superfamily (Dahlman et al., 1998). Compared to normal thyroid and differentiated cancers, ATCs have reduced E-cadherin (Dahlman et al., 1998, Husmark et al., 1999) and increased integrin α2β1 subunit expression (Dahlman et al., 1998). Normal cells at high density become growth arrested at the G1 phase. This process is mediated by the adhesion molecule E-cadherin, which binds to β- or γ-catenin and then upregulates p27KIP1. Motti et al. (2005) showed substantial differences in this coordinated response in differentiated (DTC) vs. anaplastic cell
lines. High cell density promoted β-catenin expression in both DTCs and ATCs. In contrast, p27^KIP1 mRNA was increased and protein degradation prolonged in DTC cells during confluence but not in ATC cells (Motti et al., 2005). Thus, reduced E-cadherin expression contributes to the increased proliferation, lack of contact inhibition and propensity to metastasize in ATC cells.

E-cadherin and β-catenin expression were examined by IHC in tissue microarrays in 12 cases of ATC that had associated DTC foci. E-cadherin was expressed in 92% of the DTC foci, but in only 17% of the ATC tissues. β-catenin was expressed in 67% and 50%, respectively (Wiseman et al., 2006). In a 31 marker tissue array, the same authors found that β-catenin was one of the five most strongly overexpressed proteins (Wiseman et al., 2007b). A focal adhesion protein, integrin-linked kinase (ILK), promotes anchorage-independent growth and invasion, and was elevated in ATC cell lines, and the majority of Hurthle cell and anaplastic carcinoma tissues (Younes et al., 2005). In contrast, no ILK expression was detected in ATC tissues (Wiseman et al., 2007b). More studies are necessary to determine its potential role in ATC. Another adhesion protein, focal adhesion kinase (FAK) associates with integrin receptors and is involved with cell migration and survival. FAK is overexpressed in all thyroid tumor types, including ATCs (Kim S. J. et al., 2004).

Tumor suppressors

The p53 gene is commonly dysregulated in a variety of cancers. The gene is mutated in anaplastic but not well-differentiated thyroid malignancies, and the protein is also aberrantly overexpressed. p53 was expressed in 0% of 41 well-differentiated, 12% of 43 poorly differentiated, and 32 % of 22 ATCs (Saltman et al., 2006). Wiseman et al. (2007b) reported p53 expression in 61% of ATCs. The same authors examined 12 ATCs with differentiated foci, and detected p53 in 83% of the anaplastic vs. 17% of the differentiated components of the tumors (Wiseman et al., 2007a).
Retinoblastoma protein (pRb) binds to transcription factors and inhibits cell cycle progression when DNA is damaged. It is active in its hypophosphorylated state, and when differentiated thyroid cancer cells became confluent, pRb became hyphophosphorylated, but not in ATC cells (Motti et al., 2005). The tumor suppressor p16 was undetectable in 24 of 27 ATC tissues (Lee et al., 2008), and the PTEN gene was hypermethylated in 36 ATC patient samples (Hou et al., 2008).

Preclinical studies

In vitro studies (Table 5)

Transcription factors

PPAR-γ initiates transcription as a heterodimer with RXR isoforms and, in multiple ATC cell lines, inhibits growth via apoptosis (Hayashi et al., 2004), anti-proliferation (Antonelli et al., 2008), p21 reduction of cell cycle progression (Aiello et al., 2006, Copland et al., 2006b), and inhibition of cyclin D1 (Aiello et al., 2006). In contrast, the mRNA for retinoic acid receptor α (RARα), involved in transcriptional regulation of 5’-deiodinase, was not induced by retinoic acid in ATC cell lines (Schmutzler et al., 2004). An adenovirus containing an antisense HMGI(Y) gene induced apoptosis and suppressed HMGI(Y) protein synthesis (Scala et al., 2000).

We have shown that a potent PPAR-γ agonist transcriptionally increases PPAR-γ which in turn increases RhoB. RhoB subsequently induces p21^{WAF1/CIP1} which inhibits cell growth (Copland et al., 2006a, Copland et al., 2006b). In combination with paclitaxel, there is apoptotic synergy.

Signaling pathways

The frequent presence of EGF-R in ATC tumors, and pleitropy of its effects, makes it an attractive target for drug development. Gefitinib inhibits cell growth, although high doses are
necessary (Kurebayashi et al., 2006, Nobuhara et al., 2005). The monoclonal antibody, cetuximab, also blocks the EGF-R and subsequently VEGF gene expression and secretion, but evidence for inducing apoptosis is conflicting (Hoffmann et al., 2007, Kurebayashi et al., 2006). An interesting dual inhibitor of EGF-R and VEGF-R, AEE788, was shown in ATC cells to increase apoptosis and inhibit both cell proliferation and the phosphorylation of multiple proteins (Hoffmann et al., 2007, Kim S. et al., 2005a).

Imatinib, another tyrosine kinase inhibitor with multiple targets (e.g. BCR-ABL; c-KIT; PDGF-Receptor), has variable activity in ATC cell lines. Imatinib inhibited phosphorylation of c-ABL, increased p21, decreased several cyclins, and increased cells in S phase (Podtcheko et al., 2003) and also inhibited growth and induced apoptosis (Kurebayashi et al., 2006). Reduced cell proliferation and the downstream Wnt/β-catenin pathway has been observed (Rao et al., 2006). However, the drug may not achieve its effects at clinically achievable concentrations (Dziba & Ain, 2004).

Several oncogenes mutated in ATC cells signal through the MAPK-MAPK kinase (MEK)-ERK pathway. In 13 thyroid cell lines, including 4 ATC lines, two MEK inhibitors inhibited growth, with greater sensitivity in BRAF (+) cells. PD0325901 inhibited pERK, hypophosphorylated Rb, and arrested cells at G1 (Leboeuf et al., 2008). PD0325901 inhibited cell proliferation in RAS or BRAF mutant cells, and synergized with PI3K or NF-κB inhibitors (Liu D. & Xing, 2008).

Stromal cell-derived factor-1 (SDF-1), a ligand for the CXCR4-receptor, stimulated phosphorylation of two downstream kinases, ERK1/2 and AKT, and subsequently, DNA synthesis in ATC cell lines (De Falco et al., 2007). Several agents, including siRNA CXCR4 and the antagonist, AMD3100, blocked entry of cells into S phase and cell proliferation (De...
Falco et al., 2007). AKT was also phosphorylated by IGF-1 in ATC cells, an effect inhibited by thiazolidinediones and possibly PTEN upregulation (Aiello et al., 2006). AKT inhibitor IV also inhibited AKT phosphorylation in 5 ATC cell lines (Hou et al., 2008). Signaling can occur also through c-Jun NH$_2$-terminal kinase (JNK) in ATC cells. The JNK inhibitor, SP600125, with or without ionizing radiation, inhibited cell growth (Bulgin et al., 2006).

Mitosis

Aurora kinases are critical in the process of cell division, and Aurora B phosphorylates histone H3. A small molecule Aurora kinase B quinazoline derivative inhibitor reduces phosphorylation and cell proliferation in ATC cell lines (Sorrentino et al., 2005). VX-680 effectively inhibited the cell cycle, reduced colony formation, and increased apoptosis of all Aurora kinases in multiple ATC cell lines (Arlot-Bonnemains et al., 2008).

Paclitaxel, a microtubule stabilizer, inhibited growth in multiple ATC cell lines (Ain et al., 1996, Dziba et al., 2002, Voigt et al., 2005). This agent has multiple effects, including cell cycle arrest, apoptosis and phosphorylation of multiple signaling kinases (JNK, ERK, AKT) (Pushkarev et al., 2004). The paclitaxel effects on apoptosis and tubulin acetylation are both enhanced by the histone deacetylase inhibitor, valproic acid (Catalano et al., 2007). Another tubulin-binding agent, combretastatin A4 phosphate, also increased cytotoxicity and, in several ATC cell lines, enhanced the paclitaxel effect (Dziba et al., 2002).

Proliferation

OEATC-1, a gene overexpressed in ATCs, is an anonymous gene whose function is unclear. OEATC-1 siRNA had a modest effect of inhibiting cell growth in an ATC cell line, but the mechanism is uncertain (Mizutani et al., 2005). RbAp48 is a gene target of NF-κB, and is overexpressed in ATC tissues and cell lines (Pacifico et al., 2007). Although its function is incompletely understood, an siRNA in FRO cells abolished colony formation in soft agar, and
sensitized cell proliferation response to cisplatin and doxorubicin without affecting apoptosis (Pacifico et al., 2007).

Oncolytic viruses can infect cells and lyse them. Beneficial effects in ATC cell lines have been observed with an adenovirus HSV-TK construct and thyroglobulin promoter (Kitazono et al., 2002), with an adenovirus p53-regulated Cre/loxP system in p53 mutant cells (Nagayama et al., 2001), and with a mutant vaccinia virus (Lin et al., 2007, Lin et al., 2008) and E1B gene-defective adenovirus (ONYX-015) (Portella et al., 2002). The latter effect was enhanced by lovastatin (Libertini et al., 2007). The oncolytic adenovirus, ONYX-411, reduced cell viability in pRb dysfunctional ATC cell lines (Reddi et al., 2008). Abbosh et al. (2007) developed a conditionally replicative adenovirus therapy which drives E1a and E1b genes in ATC cell lines overpressing the Wnt/β-catenin pathway.

Cell cycle
Inhibition of cell cycle progression is an important strategy for reducing tumor growth.

The cytotoxic drug gemcitabine in ATC cell lines induced G1/S arrest, and the effect was additive if followed by CDDP. Of interest, these drugs given in reverse order produced an antagonistic response as CDDP inhibits gemcitabine incorporation into DNA (Voigt et al., 2000). Imatinib increased cells in S phase. The CdK inhibitors, p21cip1/waf1 and p27kip1, were increased, and cyclins A and B1, and CDC2, were inhibited (Podtcheko et al., 2003). Bone morphogenetic protein (BMP-7), a member of the TGF-β superfamily, caused growth inhibition in four ATC cell lines by upregulating p21cip1 and p27kip1, and by inhibiting CdK2 and CdK6 activity and Rb phosphorylation (Franzen & Heldin, 2001). Other agents shown to have cytostatic effects on the cell cycle include the marine derived compound plitidepsin (Bravo et al., 2005), p53-expressing adenovirus (Blagosklonny et al., 1998) and thiazolidinediones (TZDs) (Aiello et al., 2006, Bonofgio et al., 2008, Copland et al., 2006b, Podtcheko et al., 2003).
TZDs exert their growth inhibitory effect via PPAR-γ transcriptional activation, and subsequent p21 activation (Aiello et al., 2006, Copland et al., 2006b) and involves Sp1 interaction, as it is inhibited by siRNAs to p21 or Sp1, and also by the Sp1 inhibitor, mithramycin (Bonofiglio et al., 2008). We have also shown that the PPAR-γ activation of p21 is Rho B dependent and inhibited by Rho B siRNA (Copland et al., 2006a).

Cyclin D1 is overexpressed in HTh7 cells, and an siRNA for CCND1 inhibits both cyclin D1 mRNA and protein, but has minimal effect on cell growth (Lee et al., 2008).

Apoptosis

An important regulator of the life of cells is apoptosis, a process influenced by numerous pro-and antiapoptotic proteins and pathways. The IAPs, survivin and C-IAP1, are increased, while the endogenous inhibitor, Smac, is reduced after chemotherapy; this response, thus, produces chemoresistance, a phenomenon seen in multiple tumors (Tirro et al., 2006). Several potential targets include the IAPs, as siRNA to c-IAP1 and survivin (Tirro et al., 2006) or inhibition of the IAPs by NF-κB inhibition (Meng Z. et al., 2008) both restore sensitivity to cytotoxic drugs. Overexpression of Smac is effective in enhancing cell death in resistant cells (Tirro et al., 2006), and inhibition of nuclear translocation of NF-κB also potentiates taxane-induced apoptosis (Meng Z. et al., 2008).

The growth factor, IGF-1, protects FRO cells from TRAIL-induced apoptosis, an effect that can be abrogated by the IGF-1 receptor antibody, aIR3 (Poulaki et al., 2002). Another anti-apoptotic protein, DJ-1, also renders cells less sensitive to TRAIL-induced apoptosis. Inhibition of DJ-1 by siRNA, or overexpression of DJ-1, can sensitize or make cells less sensitive to TRAIL-induced apoptosis (Zhang Hai-Yan et al., 2008). AEE788, the dual inhibitor of EGFR and VEGFR, induced ~35% suppression in two ATC cell lines at the IC₅₀ drug concentration (Kim S. et al., 2005a). Other apoptotic drugs in ATC cell lines include imatinib (Kurebayashi et
Neutrophil gelatinase-associated lipocalin (NGAL) enhances survival by increasing iron-dependent nucleotide metabolism and reducing apoptosis (Iannetti et al., 2008). The serine/threonine kinase, polo-like kinase 1 (PLK-1), can be decreased when either p53 or p21 are overexpressed, and apoptosis is increased by siRNA PLK-1 (Salvatore et al., 2007). The DUSP26 gene (coding for a MAPK phosphatase) is overexpressed in ATC cell lines, as is the protein in tumors (Yu et al., 2007). DUSP26 dephosphorylates p38, a regulator of apoptosis upstream of caspase-3. A DUSP26 siRNA was effective in activating caspase-3 and increasing apoptosis (Yu et al., 2007).

Migration

Little is known about motility in ATC cells. Autotaxin (ATX) is a motility promoting protein in a number of tumors. Higher levels of ATX mRNA were expressed in anaplastic versus other thyroid malignancies, and was increased in ATC cell lines also (Kehlen et al., 2004). In the 1736 cell line, IL1β, IL4, and TGF-β suppressed, while EGF and bFGF stimulated, ATX mRNA. Functionally, when ATX was transfected into UTC-1736 cells, migration was enhanced (Kehlen et al., 2004). Balthasar et al. (2008) showed that the VEGFR-2 inhibitor 1 attenuated cell migration in FRO cells. Although they showed that sphingosine-1-phosphate stimulated VEGF-A secretion, suggesting cross-talk between the G-protein coupled S1P receptor regulating migration and the VEGFR tyrosine kinase receptor, a high concentration of S1P was required (Balthasar et al., 2008). Thus, the mechanism of VEGFR affecting migration in FRO ATC cells is unclear.

Protein degradation
Proteins are degraded in the 26S proteasome, some of which play important roles in reducing cell growth. Bortezomib is a proteosome inhibitor that prevented degradation of p53, p21, and the inhibitor of NF-κB (i.e. IκB) cleaved caspases leading to apoptosis and synergized with doxorubicin in ATC cell lines (Mitsiades et al., 2006). Conticello et al. (2007) confirmed the p21 and apoptosis effects of bortezomib and showed that TRAIL-mediated cytotoxicity was increased.

Epigenetics

Epigenetic silencing of genes occurs through deacetylation or methylation. Kitazono et al. (2001) showed that depsipeptide increased histone H3 acetylation and growth inhibition in SW-1736 cells. Several thyroid specific mRNAs, sodium iodide symporter and thyroglobulin, as well as ^{125}I uptake, were enhanced. Valproic acid (VPA), another histone deacetylase inhibitor, increased the acetylation of H4 histone, resulting in enhanced doxorubicin-mediated apoptosis and G2 cell cycle arrest (Catalano *et al.*, 2006). The same authors showed that valproic acid, while having no independent effect on apoptosis, also enhanced the paclitaxel effect (Catalano *et al.*, 2007); they also showed that VPA induced tubulin acetylation. Xing (2007) reviewed several studies showing that thyroid specific genes (e.g. Na$^+$/I$^-$ symporter, thyroid peroxidase, and thyroglobulin) as well as iodide uptake could be restored by deacetylase inhibition in poorly differentiated and anaplastic thyroid cancers.

Husmark et al. (1999) showed that 5-aza-2’-deoxycytidine (5-Aza), a demethylating agent, could upregulate E-cadherin and γ-catenin in ATC cell lines. Two genes frequently epigenetically silenced through CpG island promoter methylation are the Ras association domain family 1A gene (RASSF1A) and the CdK inhibitor, p16INK4a. RASSF1A, located on chromosome 3p21, may also lose function from loss of heterozygosity. Schagdarsurengin et al. (2002) reported high levels of methylation of both genes in ATC tissues, and of RASSF1A in...
cell lines, and that treatment with the methylation inhibitor, 5-aza-2’-deoxycytidine, restored transcriptional activity. The same authors subsequently analyzed the methylation status of 17 gene promoters in 9 ATC tissues and 5 ATC cell lines. Compared to other thyroid cancers, ATCs had a significant increase in methylation of five genes: p16^{INK4a} (cell cycle), death associated protein kinase (DAPK) and UCHL1 (apoptosis), MGMT (DNA repair), and TSH-receptor (Schagdarsurengin <i>et al.</i>, 2006). 5-Aza successfully restored gene expression in all four ATC cell lines tested.

In vivo studies

Studies in vivo provide further confirmation of a drug or other agent’s effect, and are extremely important to perform prior to considering human clinical trials. The nude mouse xenograft model has been used almost exclusively for the small number of reports published in preclinical studies of ATC (Table 6). Imatinib and gefitinib both inhibit tumor growth (Kurebayashi <i>et al.</i>, 2006, Nobuhara <i>et al.</i>, 2005, Podtcheko <i>et al.</i>, 2003). Kim <i>et al.</i> (2005a) showed that dual inhibition of EGFR and VEGFR, in combination with paclitaxel, is effective. Mechanistically, AEE788 reduced tumor cell autophosphorylation of EGFR and MAPK, and endothelial cell EGFR and VEGF-R2 phosphorylation both singly and with paclitaxel. Microvessel density was decreased and apoptosis increased (Kim S. <i>et al.</i>, 2005a). The MEK inhibitor, AZD6244, blunted tumor growth and pERK (Leboeuf <i>et al.</i>, 2008). The tubulin-binding agent, combretastatin A4P, was equally effective in growth inhibition (Dziba <i>et al.</i>, 2002), while CXCR4 inhibition with AMD3100 inhibited tumor growth by more than 90% (De Falco <i>et al.</i>, 2007).

The farnesyl transferase inhibitor, manumycin, was completely effective in inhibiting growth and, in combination with paclitaxel, caused tumor shrinkage. Manumycin, but not
paclitaxel, inhibited angiogenesis in the animal model (Xu G. et al., 2001). An oncolytic vaccinia virus (GLV-1h68) produced almost complete inhibition of xenograft growth when injected intratumorally (Lin et al., 2008) while the oncolytic virus, ONYX-015, produced a modest inhibition of tumor growth. The effect was more than doubled by lovastatin due, at least in part, to increased viral replication (Libertini et al., 2007). An NGAL siRNA markedly inhibited growth of FRO cell tumors in nude mice, suggesting a possible NF-κB pathway target for therapeutics (Iannetti et al., 2008). DHMEQ, an inhibitor of NF-κB translocation, also inhibited tumor growth as a single agent, and synergized with docetaxel (Meng Z. et al., 2008).

Future in vivo studies would benefit from an orthotopic model, which recreates the clinical presentation of local neck invasion and distant metastases (Kim S. et al., 2005a, Kim S. et al., 2005b).

Clinical management

The rarity of anaplastic thyroid carcinoma limits the number of patients seen annually, even at referral centers. Thus, most series have accrued patients over several decades (Table 7). Comparisons across reported studies are confounded by the variety of treatments tried over these extended periods of time, and by the paucity of controlled clinical trials.

McIver et al. (2001) reviewed the 50-year experience with 134 patients at the Mayo Clinic. The primary tumor size averaged 7cm (range: 2-16 cm), and 46% had distant metastases on presentation. Ninety-six (72%) of patients received some surgery (attempt at cure in 35 or debulking in the rest) and most received external beam radiotherapy (XRT) post-operatively. Surgery and XRT had a modest effect on survival compared to palliation alone (3.5 and 2.3 months, vs 3 weeks). Interestingly, the longest survivor (23 years) had surgery alone for a 6.1cm primary tumor with 3 lymph nodes involved. Multimodal therapy (surgery, XRT and
radiosensitizing chemotherapy) was used in 13 patients; median survival was unaffected, although there was a trend towards an improved one-year survival.

Junor et al. (1992) treated 91 patients in Glasgow, UK, from 1961-1986. Those who had surgery (5-total thyroidectomy; 28-partial thyroidectomy) had improved survival. Eighty-six patients received radiotherapy, and the dose did not alter survival; neither did chemotherapy improve survival.

Levendag et al. (1993) treated 51 patients from 1970 – 1986. Twenty-three had surgery (“total” resection in 15, with negative margins in one; incisional biopsy in 8). Median survival was 3.4 months in the thyroidectomy group, and 2.7 months in the biopsy-only patients. All received radiotherapy, but >30 Gy in only 57%. Overall survival at one year was 6%. Higher doses of radiation provided some advantage, with a one-year survival of 10% in those receiving ≥ 30 Gy, and 20% if the extrapolated tolerance dose > 60 Gy.

In Helsinki, Finland, 33 patients had surgery over 27 years, although total thyroidectomy could be done in but 11 patients (Voutilainen et al., 1999). At diagnosis, 48% had distant metastases. Radiotherapy and cytotoxic drugs were individualized, and neither the radiation schedule nor chemotherapeutics used were provided. Predictors of survival included: tumor resectability, radiotherapy, and distant metastases at diagnosis.

At the Roswell Cancer Institute, 21 patients were treated between 1968-1992 (Tan et al., 1995). Five had complete resection, 18 received XRT, and 6 were given adriamycin +/- one or more other agents. Overall, the median survival was 4.5 months and two-year survival was 14%. Of the five who had complete resection, the 5-year survival was 60% (only three had XRT + chemo; one had XRT only, and one had only surgery). Twelve patients had incomplete resections; none lived for two years.
Pierie et al. (2002) treated 67 patients from 1969-1999. Complete resection was achieved in 12 (8 of whom had incidental ATC discovered at surgery). Survival was highest after complete resection and least with no resection (one-year: 93% and 4%, respectively). Radiation doses >45 Gy improved survival compared to lower doses, and chemotherapy had no significant effect (Pierie et al., 2002).

Kim and Leeper (1983) introduced the strategy of low-dose adriamycin (10mg/m^2/week) with hyperfractionated radiotherapy (160 rads twice a day, 3 days a week: total dose = 5760 rads). Two patients died within 2 weeks; 9 others had completed treatment, and 7 had complete local responses. Median survival of the 9 treated patients was approximately 10 months. Only one patient had complete thyroid resection, while 5 had partial resection and 3 biopsy only distant metastases at diagnosis.

In Japan, 16 patients were treated with conventional XRT from 1971-83, and chemotherapy included adriamycin, mitomycin C, or cyclophosphamide. An additional 21 received hyperfractionated XRT with adriamycin and/or cisplatin from 1984-93. Twenty-four had surgery. Of the 19 with complete resections, the one-year survival was 20%, while no one with residual disease after surgery survived a year (Kobayashi et al., 1996).

One of few prospective clinical trials was conducted by the Eastern Cooperative Oncology Group (Shimaoka et al., 1985). From 1976 to 1982, 21 patients were randomized to doxorubicin vs. 18 to doxorubicin plus cisplatin. The single agent group had no complete and one partial response while the two-drug regimen produced 3 complete and 3 partial remissions (5% vs. 33%; p=0.03). Median survival was 2.7 months, but two CRs were long-lasting at 41.3 and 34.7 months, with one patient treated with thyroidectomy and radiotherapy, and the other only a biopsy.
Schlumberger et al. (1991) reported their 10-year experience with a combination of chemotherapy and external beam radiotherapy. Patients ≤ 65 years (n=12) received doxorubicin and cisplatin every 4 weeks with XRT during the first 4 cycles. Two were disease-free after surgery, and one was alive at 34 months. Four had small neck disease at time of the therapy, and had CRs of 4, 6, 8, and 22 months. Six had initial distant metastases and were dead within 6 months. Eight patients ≥ 61 years received mitoxantrone every 4 weeks, with radiotherapy. Two had no detectable disease post-operatively and one had a 40-month remission. Three had initial neck disease only, but no surgery, and three had distant metastases. The longest response was 8 months.

The Japanese Society of Thyroid Surgery performed a pilot study of intensive chemotherapy in 17 patients from 1992 to 1994 (Chemotherapy Committee The Japanese Society of Thyroid Surgery, 1995). Therapy included cisplatin, adriamycin, etoposide, peplomycin and granulocyte colony-stimulating factor every 3 weeks with local XRT after one cycle. Ten patients had advanced disease, only 4 received XRT, and 2 had PRs of 2 and 3 months. Seven patients had no residual disease after thyroidectomy, 6 received adjuvant chemotherapy, and 5 received XRT. Three were alive without recurrence at 3, 11, and 11 months.

Mitchell et al. (1999) treated 17 patients with aggressive radiation (twice daily, 5 days a week, 20-24 days, total dose = 60.8 Gy) to see if they could improve local control. Only one patient had prior thyroidectomy, 6 had debulking, 7 had a biopsy, and 3 had fine needle aspiration. Clinical responses (partial or complete) were achieved in 59%, and stable disease in 29%, with local control maintained in 76%. However, all patients died within 8 months, and the authors concluded that toxicity was unacceptable.
Eighty-one patients from the Stockholm-Gotland region of Sweden were treated during a 27-year period (Nilsson et al., 1998). There were six separate time frames during which the type of chemotherapy and radiotherapy given were varied. As surgery was performed more frequently and radiation therapy was accelerated and hyperfractionated, local disease recurrence was substantially reduced. Unfortunately, overall survival was not improved and, in fact, was shortened. Results in these Swedish patients during the era of doxorubicin were summarized (Tennvall et al., 2002). Of 55 patients treated over 15 years, 40 had surgery initially. While local control occurred in 60%, median and one-year survival were similar to other reports.

Haigh et al. (2001) managed 33 patients and found that surgical resection with curative intent in 8 resulted in a median survival of 43 months and 5-year survival of 50%. Most also received XRT, and a broad spectrum of chemotherapeutic agents was used. In 18 patients with palliative surgery and 7 who received chemotherapy and XRT without surgery, the median survivals were 3 and 3.3 months. Thus, patients whose tumor could be visibly resected had a much better chance of treatment response.

In Slovenia, Besic et al. (2005) treated 188 patients between 1972-2003. Factors favoring survival were age (<70 years), good performance status, slow tumor growth, and lack of extrathyroidal extension or distant metastases. In an earlier report of 162 patients (Besic et al., 2001), survival was similar in those who had primary surgery vs. primary radiotherapy and/or chemotherapy. However, median survival was best in patients who had primary chemo- and radiotherapy and in whom surgery could then be performed (Besic et al., 2001).

DeCrevoisier and colleagues (2004) treated 30 patients over 10 years in a prospective protocol combining surgery, chemotherapy, and radiotherapy. Their patients differed in that only 6 of 30 had distant metastases at presentation. Surgery was followed by chemotherapy
(doxorubicin plus cisplatin) every 4 weeks starting 3 weeks after surgery, and hyperfractionated accelerated XRT after cycle two. Nine patients had visibly complete resection, and seven had complete remission (none had initial tracheal extension). Of the nine with complete resection, six had mixed ATC, and 3 had < 20% ATC. The median survival of all patients was 10 months, while one and 3-year survivals were 46% and 27%, respectively.

Wang et al. (2006) treated 47 patients with radiotherapy from 1983-2004. Twenty-three patients with good performance status and no distant metastases received radical radiotherapy (>40 Gy), while twenty-four with poor performance status or distant metastases received palliative therapy (<40 Gy). Overall medial survival was 5.6 months (11.1 and 3.2 months, respectively).

In Turin, Italy, 27 patients were treated in a 5-year period (Brignardello et al., 2007). Surgery was performed initially (maximum debulking in 11, and palliative in 6). Chemotherapy (doxorubicin + cisplatin) was given during and after radiation. The approach in five patients was neo-adjuvant chemo /XRT followed when possible by surgery, while five others had paclitaxel therapy alone. As in other series, surgical resection was the major contributor to patient responses. While median survival was only 3.9 months, those with maximal debulking had a 6-month survival of 58%; those with palliative or no surgery, only 10%.

Twelve population-based cancer registries in the NCI’s Surveillance, Epidemiology, and End Results (SEER) database from 1971-2000 were reviewed (Kebebew et al., 2005). There were 516 patients (171 men, 345 women) with a mean age of 71.3 years at diagnosis of ATC. The one-year survival was 19.3%, and favorable predictors were age <60 years, intrathyroidal disease, and combined use of surgery and radiotherapy.
Based on preclinical data (Ain et al., 1996), an open-label phase 2 clinical trial of paclitaxel as a 96-hour infusion was conducted (Ain et al., 2000). Prior surgery included thyroidectomy, lobectomy, or biopsy in 8, 3 and 8 patients, respectively. Disease progression occurred in 42%, while stable disease (5%), partial regression (47%) or complete regression (5%) were observed in the remainder. Overall survival was six months, with a median survival of 32 weeks in the 10 responders, and only 7 weeks in 8 non-responders.

New therapies

Thyroid trials

Three studies of novel targeted agents have included a limited number of ATC patients. Three ATC patients in a phase I study received combretastatin A-4 phosphate, one of whom had a complete remission and was alive at 30 months (Dowlati et al., 2002). In a phase 1 trial of intermittent high-dose gefitinib and docetaxel, one patient had ATC and experienced a 4-month partial remission (Fury et al., 2007). Two ATC patients enrolled in a phase 2 trial with axitinib; one had a partial remission (duration unknown) and one, progressive disease (Cohen et al., 2008).

A review of www.clinicaltrials.gov on June 30, 2008 showed the following trials listed for ATC. Phase 2 thyroid specific trials included 4 completed (two with combrestatin, one with intensified combination hydroxyurea/paclitaxel and hyperfractionated XRT, and one with irofulven/capecitabine); two were active/not recruiting (imatinib, gefitinib); and 4 recruiting (sorafenib, pazopanib, sunitinib, and combination PPAR-γ agonist, CS-7017/paclitaxel).

There were five phase 1 trials listed that included ATC patients as eligible. Two trials were completed (SU5416/paclitaxel, tipifarnib/trastuzumab), two were active/not recruiting (IL-12/trastuzumab, NGR-TNF (European study), and one was recruiting (sorafenib/bevacizumab).
Results from these studies will hopefully provide insight into which newer agents might be tested further.

Potential agents

It should be mentioned that several ATC cell lines, including DRO, ARO, and KAT4, may be derived from cancers other than anaplastic thyroid tumors (Schweppe *et al.*, 2008). Given this concern, we have not cited results which used only these cell lines. However, it would be worthwhile repeating these studies with other confirmed ATC cell lines, as there are some interesting additional potential therapeutic targets.

There are many potential therapeutic targets for this deadly disease, as listed in Tables 1, 3-7. A number of articles have reviewed the many pathways that have applicability to ATC, and have discussed a variety of agents being developed. The reader is referred to the following recent reviews for details: chromosomal abnormalities (Frohling & Dohner, 2008), oncogenes (Croce, 2008), RET and RAS-MAPK pathways (Santoro & Carlomagno, 2006, Sebolt-Leopold, 2008, Williams & Smallridge, 2004), AKT (Shinohara *et al.*, 2007), c-MET (Salgia, 2008), angiogenesis (Kerbel, 2008), EGFR (Ciardiello & Tortora, 2008), apoptosis (Altieri, 2008, Ferreira *et al.*, 2002, Vucic, 2008), mitosis (Bhat & Setaluri, 2007, Gautschi *et al.*, 2008, Strebhardt & Ullrich, 2006), Hsp 90 (Bishop *et al.*, 2007), epigenetics (Esteller, 2008, Xing, 2007), farnesyl transferases (Appels *et al.*, 2005), proteosomes (Orlowski & Kuhn, 2008), tumor microenvironment (Blansfield *et al.*, 2008, Parsons *et al.*, 2008), and microRNAs (Jeyaseelan *et al.*, 2007).

Future directions

Survival of patients with ATC has changed little in the past 50 years, despite more aggressive systemic and radiotherapies. Much has been learned about the genes, RNAs, and
proteins dysregulated. Given the genomic instability of ATC, effective therapies may benefit from comprehensive microarray analysis (Shai, 2006) or genome-wide screening (Sultan et al., 2008) to develop an individualized therapeutic regimen that maximally inhibits major pathways at multiple genetic and epigenetic levels. In addition, to more fully characterize the complex molecular profile, subsequent rapid in vitro screening assays of combinations of targeted therapies may further optimize a patient’s treatment plan. Finally, refinement may derive from evolving drug delivery systems such as nanoparticles (Cho et al., 2008).

Acknowledgment

This work was funded in part from NIH grant P30CA15083 (Cancer Center Support Grant, RCS), Mayo Clinic Research Committee (RCS), Florida Department of Health Bankhead Coley grant (JAC, RCS) and a grant for rare cancers from Dr. Ellis and Dona Brunton (JAC). Drs. Smallridge and Copland are investigators in a clinical trial of anaplastic thyroid carcinoma funded by Daiichi Sankyo Pharma Development. The authors thank Dr. Stefan Grebe for reviewing the manuscript.
References

Berlingieri MT, Pierantoni GM, Giancotti V, Santoro M & Fusco A 2002 Thyroid cell transformation requires the expression of the HMGA1 proteins. *Oncogene* 21 2971-2980.

Bravo SB, Garcia-Rendueles ME, Seoane R, Dosil V, Cameselle-Teijeiro J, Lopez-Lazaro L,
Zalvide J, Barreiro F, Pombo CM & Alvarez CV 2005 Plitidepsin has a cytostatic effect in
Brignardello E, Gallo M, Baldi I, Palestini N, Piovesan A, Grossi E, Ciccone G & Boccuzzi G
2007 Anaplastic thyroid carcinoma: clinical outcome of 30 consecutive patients referred to a
single institution in the past 5 years. Eur J Endocrinol 156 425-430.
Bulgin D, Podtcheko A, Takakura S, Mitsutake N, Namba H, Saenko V, Ohtsuru A,
Rogounovitch T, Palona I & Yamashita S 2006 Selective pharmacologic inhibition of c-Jun
NH2-terminal kinase radiosensitizes thyroid anaplastic cancer cell lines via induction of
terminal growth arrest. Thyroid 16 217-224.
Calin GA & Croce CM 2006 MicroRNA signatures in human cancers. Nat Rev Cancer 6 857-
866.
Calin GA, Sevignani C, Dumitru CD, Hyslop T, Noch E, Yendamuri S, Shimizu M, Rattan S,
Bullrich F, Negrini M et al. 2004 Human microRNA genes are frequently located at fragile
sites and genomic regions involved in cancers. Proc Natl Acad Sci U S A 101 2999-3004.
Catalano MG, Poli R, Pugliese M, Fortunati N & Boccuzzi G 2007 Valproic acid enhances
tubulin acetylation and apoptotic activity of paclitaxel on anaplastic thyroid cancer cell lines.
Endocr Relat Cancer 14 839-845.
G 2006 Valproic acid, a histone deacetylase inhibitor, enhances sensitivity to doxorubicin in
Chan JA, Krichevsky AM & Kosik KS 2005 MicroRNA-21 is an antiapoptotic factor in human

Copland JA, Marlow LA, Gumz M, Kreinest PA, Kurakata S, Fujiwara K, McIver B, Sebo T & Smallridge RC 2006a Peroxisome proliferator activated receptor gamma (PPARγ) transcriptionally regulates RhoB, a tumor suppressor essential for PPARγ mediated
antitumor activity in anaplastic thyroid carcinoma (ATC) *Annual Meeting of the American Thyroid Association*, Phoenix, AZ; Oct 14; (Abstr).

Dziba JM & Ain KB 2004 Imatinib mesylate (gleevec; STI571) monotherapy is ineffective in suppressing human anaplastic thyroid carcinoma cell growth in vitro. J Clin Endocrinol Metab 89 2127-2135.

Dziba JM, Marcinek R, Venkataraman G, Robinson JA & Ain KB 2002 Combretastatin A4 phosphate has primary antineoplastic activity against human anaplastic thyroid carcinoma cell lines and xenograft tumors. Thyroid 12 1063-1070.

Franzen A & Heldin NE 2001 BMP-7-induced cell cycle arrest of anaplastic thyroid carcinoma cells via p21(CIP1) and p27(KIP1). Biochem Biophys Res Commun 285 773-781.

Haigh PI, Ituarte PH, Wu HS, Treseler PA, Posner MD, Quivey JM, Duh QY & Clark OH 2001 Completely resected anaplastic thyroid carcinoma combined with adjuvant chemotherapy and irradiation is associated with prolonged survival. *Cancer* 91 2335-2342.

1 He H, Jazdzewski K, Li W, Liyanarachchi S, Nagy R, Volinia S, Calin GA, Liu CG, Franssila K,
2 Suster S et al. 2005 The role of microRNA genes in papillary thyroid carcinoma. *Proc Natl
3 Acad Sci U S A* 102 19075-19080.
4 Hemmer S, Wasenius VM, Knuutila S, Franssila K & Joensuu H 1999 DNA copy number
5 changes in thyroid carcinoma. *Am J Pathol* 154 1539-1547.
7 Zielke A 2007 Differential effects of cetuximab and AEE 788 on epidermal growth factor
8 receptor (EGF-R) and vascular endothelial growth factor receptor (VEGF-R) in thyroid
9 cancer cell lines. *Endocrine* 31 105-113.
10 Hou P, Ji M & Xing M 2008 Association of PTEN gene methylation with genetic alterations in
11 the phosphatidylinositol 3-kinase/AKT signaling pathway in thyroid tumors. *Cancer* Epub 2
14 Tallini G et al. 2007 Genetic alterations and their relationship in the phosphatidylinositol 3-
16 Husmark J, Heldin NE & Nilsson M 1999 N-cadherin-mediated adhesion and aberrant catenin
17 expression in anaplastic thyroid-carcinoma cell lines. *Int J Cancer* 83 692-699.
18 Iannetti A, Pacifico F, Acquaviva R, Lavorgna A, Crescenzi E, Vascotto C, Tell G, Salzano AM,
19 Scaloni A, Vuttariello E et al. 2008 The neutrophil gelatinase-associated lipocalin (NGAL), a
20 NF-kappaB-regulated gene, is a survival factor for thyroid neoplastic cells. *Proc Natl Acad
22 Inazawa J, Inoue J & Imoto I 2004 Comparative genomic hybridization (CGH)-arrays pave the

Kebebew E, Peng M, Treseler PA, Clark OH, Duh QY, Ginzinger D & Miner R 2004 Id1 gene expression is up-regulated in hyperplastic and neoplastic thyroid tissue and regulates growth and differentiation in thyroid cancer cells. J Clin Endocrinol Metab 89 6105-6111.

expression of the Na(+)/I(-) symporter and iodine accumulation in poorly differentiated thyroid carcinoma cells. *J Clin Endocrinol Metab* 86 3430-3435.

Miettinen M & Franssila KO 2000 Variable expression of keratins and nearly uniform lack of thyroid transcription factor 1 in thyroid anaplastic carcinoma. *Hum Pathol* 31 1139-1145.

Montero-Conde C, Martin-Campos JM, Lerma E, Gimenez G, Martinez-Guitarte JL, Combalia
N, Montaner D, Matias-Guiu X, Dopazo J, de Leiva A et al. 2008 Molecular profiling related
to poor prognosis in thyroid carcinoma. Combining gene expression data and biological

Motti ML, Califano D, Baldassarre G, Celetti A, Merolla F, Forzati F, Napolitano M, Tavernise
B, Fusco A & Viglietto G 2005 Reduced E-cadherin expression contributes to the loss of
p27kip1-mediated mechanism of contact inhibition in thyroid anaplastic carcinomas.
Carcinogenesis 26 1021-1034.

Nagayama Y, Nishihara E, Namba H, Yokoi H, Hasegawa M, Mizuguchi H, Hayakawa T,
Hamada H, Yamashita S & Niwa M 2001 Targeting the replication of adenovirus to p53-
defective thyroid carcinoma with a p53-regulated Cre/loxP system. *Cancer Gene Ther* 8 36-
44.

Nakashima M, Takamura N, Namba H, Saenko V, Meirmanov S, Matsumoto N, Hayashi T,
Maeda S & Sekine I 2007 RET oncogene amplification in thyroid cancer: correlations with
radiation-associated and high-grade malignancy. *Hum Pathol* 38 621-628.

Namba H, Nakashima M, Hayashi T, Hayashida N, Maeda S, Rogounovitch TI, Ohtsuru A,
Saenko VA, Kanematsu T & Yamashita S 2003 Clinical implication of hot spot BRAF
mutation, V599E, in papillary thyroid cancers. *J Clin Endocrinol Metab* 88 4393-4397.

Nikiforov YE 2004 Genetic alterations involved in the transition from well-differentiated to
poorly differentiated and anaplastic thyroid carcinomas. *Endocr Pathol* 15 319-327.

Nikiforova MN, Kimura ET, Gandhi M, Biddinger PW, Knauf JA, Basolo F, Zhu Z, Giannini R,
Salvatore G, Fusco A et al. 2003 BRAF mutations in thyroid tumors are restricted to
papillary carcinomas and anaplastic or poorly differentiated carcinomas arising from
papillary carcinomas. *J Clin Endocrinol Metab* 88 5399-5404.

53

9 Quiros RM, Ding HG, Gattuso P, Prinz RA & Xu X 2005 Evidence that one subset of anaplastic thyroid carcinomas are derived from papillary carcinomas due to BRAF and p53 mutations. *Cancer* 103 2261-2268.

Shimaoka K, Schoenfeld DA, DeWys WD, Creech RH & DeConti R 1985 A randomized trial of
doxorubicin versus doxorubicin plus cisplatin in patients with advanced thyroid carcinoma.
Cancer 56 2155-2160.

Shinohara M, Chung YJ, Saji M & Ringel MD 2007 AKT in thyroid tumorigenesis and
progression. _Endocrinology_ 148 942-947.

Soares P, Trovisco V, Rocha AS, Feijao T, Rebocho AP, Fonseca E, Vieira de Castro I,
Cameselle-Teijeiro J, Cardoso-Oliveira M & Sobrinho-Simoes M 2004 BRAF mutations
typical of papillary thyroid carcinoma are more frequently detected in undifferentiated than
in insular and insular-like poorly differentiated carcinomas. _Virchows Arch_ 444 572-576.

Sorrentino R, Libertini S, Pallante PL, Troncone G, Palombini L, Bavetsias V, Spalletti-Cernia
D, Laccetti P, Linardopoulos S, Chieffi P _et al._ 2005 Aurora B overexpression associates
with the thyroid carcinoma undifferentiated phenotype and is required for thyroid carcinoma
 cell proliferation. _J Clin Endocrinol Metab_ 90 928-935.

cascade potentiates the effect of a combination treatment of anaplastic thyroid cancer cells. _J
Clin Endocrinol Metab_ 89 410-418.

Strebhardt K & Ullrich A 2006 Targeting polo-like kinase 1 for cancer therapy. _Nat Rev Cancer_
6 321-330.

Sultan M, Schulz MH, Richard H, Magen A, Klingenhoff A, Scherf M, Seifert M, Borodina T,
Soldatov A, Parkhomchuk D _et al._ 2008 A global view of gene activity and alternative
splicing by deep sequencing of the human transcriptome. _Science_ 321 956-960.

Takakura S, Mitsutake N, Nakashima M, Namba H, Saenko VA, Rogounovitch TI, Nakazawa Y,
Hayashi T, Ohtsuru A & Yamashita S 2008 Oncogenic role of miR-17-92 cluster in
anaplastic thyroid cancer cells. _Cancer Sci_ 99 1147-1154.

Vucic D 2008 Targeting IAP (inhibitor of apoptosis) proteins for therapeutic intervention in

Wada N, Yoshida A, Miyagi Y, Yamamoto T, Nakayama H, Suganuma N, Matsuzu K, Masudo
K, Hirakawa S, Rino Y *et al.* 2008 Overexpression of the mitotic spindle assembly
checkpoint genes hBUB1, hBUBR1 and hMAD2 in thyroid carcinomas with aggressive
nature. *Anticancer Res* 28 139-144.

Wang S, Lloyd RV, Hutzler MJ, Safran MS, Patwardhan NA & Khan A 2000 The role of cell
cycle regulatory protein, cyclin D1, in the progression of thyroid cancer. *Mod Pathol* 13 882-
887.

Wang Y, Tsang R, Asa S, Dickson B, Arenovich T & Brierley J 2006 Clinical outcome of
anaplastic thyroid carcinoma treated with radiotherapy of once- and twice-daily fractionation
regimens. *Cancer* 107 1786-1792.

prevalence and mutual exclusivity of genetic alterations in the phosphatidylinositol-3-

is deregulated in follicular thyroid carcinoma. *J Clin Endocrinol Metab* 91 3584-3591.

Wilkens L, Benten D, Tchinda J, Brabant G, Potter E, Dralle H & von Wasielewski R 2000
Aberrations of chromosomes 5 and 8 as recurrent cytogenetic events in anaplastic carcinoma
of the thyroid as detected by fluorescence in situ hybridisation and comparative genomic

Williams SF & Smallridge RC 2004 Targeting the ERK pathway: novel therapeutics for thyroid

<table>
<thead>
<tr>
<th>Reference</th>
<th>Ras</th>
<th>BRAF</th>
<th>P53</th>
<th>β-catenin</th>
<th>PIK3CA</th>
<th>Axin</th>
<th>APC</th>
<th>PTEN</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Fagin et al., 1993)</td>
<td></td>
<td>5/6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Donghi et al., 1993)</td>
<td></td>
<td>5/7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Zou et al., 1993)</td>
<td></td>
<td>1/5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Zedenius et al., 1996)</td>
<td></td>
<td>1/4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Garcia-Rostan et al., 1999)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>19/31</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Garcia-Rostan et al., 2003)</td>
<td>15/29</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Fukushima et al., 2003)</td>
<td>2/7</td>
<td>0/7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Namba et al., 2003)</td>
<td></td>
<td>2/6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Nikiforova et al., 2003)</td>
<td></td>
<td>3/29</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Soares et al., 2004)</td>
<td></td>
<td>6/17</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Begum et al., 2004)</td>
<td></td>
<td>8/16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Kurihara et al., 2004)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1/22</td>
<td>18/22</td>
<td>2/22</td>
</tr>
<tr>
<td>(Quiros et al., 2005)</td>
<td>1/8</td>
<td>5/8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Garcia-Rostan et al., 2005)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>16/70</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Takano et al., 2007a)</td>
<td></td>
<td>4/20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Mitsiades et al., 2007)</td>
<td></td>
<td>1/7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Hou et al., 2007, Liu Z. et al., 2008)</td>
<td>4/50</td>
<td>14/49</td>
<td>6/50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8/48</td>
</tr>
<tr>
<td>(Santarpia et al., 2008)</td>
<td>2/36</td>
<td>9/36</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2/36</td>
</tr>
<tr>
<td>(Costa et al., 2008)</td>
<td>13/36</td>
<td>9/36</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total (%)</td>
<td>37/166 (22%)</td>
<td>61/231 (26%)</td>
<td>12/22 (55%)</td>
<td>20/53 (38%)</td>
<td>27/156 (17%)</td>
<td>18/22 (82%)</td>
<td>2/22 (9%)</td>
<td>10/84 (12%)</td>
</tr>
<tr>
<td>Reference</td>
<td>Patients (n)</td>
<td>Cell lines (n)</td>
<td>Gains</td>
<td>Losses</td>
<td>Both</td>
<td>Chromosomes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td>--------------</td>
<td>----------------</td>
<td>-------</td>
<td>--------</td>
<td>------</td>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Jenkins et al., 1990)</td>
<td>2</td>
<td>_____</td>
<td>_____</td>
<td>_____</td>
<td>_____</td>
<td>Complex clonal karyotype; loss of 8 (both); x; y -2,-4,-8,-9,+11,+13,+14,-14,+15,-17,-19,-20,-21,-22,-x,-y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Hemmer et al., 1999)</td>
<td>13</td>
<td>_____</td>
<td>10/13</td>
<td>3/13</td>
<td>2/13</td>
<td>+7p (31%); +8q (23%); +9q (23%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Wilkens et al., 2000)</td>
<td>9</td>
<td>2</td>
<td>_____</td>
<td>_____</td>
<td>_____</td>
<td>Gains in 14 chromosomes; Losses in 8 chromosomes; Most common: 5p amplified; 8p, 8q gains or losses</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Kitamura et al., 2000)</td>
<td>21</td>
<td>_____</td>
<td>_____</td>
<td>_____</td>
<td>_____</td>
<td>Allelic losses 16/21; Losses: 1q (40%); 9p (58%); 11p (33%); 11q (33%); 17p (44%); 17q (43%); 19p (36%); 22q (38%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Wreesmann et al., 2002)</td>
<td>15</td>
<td>_____</td>
<td>_____</td>
<td>_____</td>
<td>_____</td>
<td>Early Gains: 5,8,19; Losses: 8,22; Intermediate: Gains:1,6,9,17,20; Losses: 1,2,6,13 Late: Gains: 3p, 11q; Losses: 5q</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Miura et al., 2003)</td>
<td>10</td>
<td>1</td>
<td>5/10</td>
<td>2/10</td>
<td>_____</td>
<td>Gains: 1,4,5,6,7,10,14,16,19,20,21,x; Losses: 3p; 9q</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Rodrigues et al., 2004)</td>
<td>7</td>
<td>_____</td>
<td>_____</td>
<td>_____</td>
<td>_____</td>
<td>Gains in all chromosomes; Losses less common; High amplification in: 3p, 5p, 6p, 9p, 12p, 14q, 18p</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Rodrigues et al., 2007)</td>
<td>_____</td>
<td>3</td>
<td>_____</td>
<td>_____</td>
<td>_____</td>
<td>Amplifications: 3q24; 5p; 7p; 7q; 12p; 14q; 20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Lee et al., 2007)</td>
<td>_____</td>
<td>8</td>
<td>_____</td>
<td>_____</td>
<td>_____</td>
<td>Frequent: Gains: 8q; 11q; 19; 20q; Losses: 4q; Amplification: 8q</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Lee et al., 2008)</td>
<td>27</td>
<td>_____</td>
<td>_____</td>
<td>_____</td>
<td>_____</td>
<td>Gains: 1q21; 6p22-p21; 7q11.22-11.23; 11q13; 12q13; 16p11.2; 17q21; 19p13; 19q13.1-q13.2; 20q11.2; 20q13.12; 22q11.21; 22q13.1 Losses: 4q12-q13.1; 4q28.3; 13q21.2-q21.31</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 3: Some microRNAs altered in thyroid malignancies

<table>
<thead>
<tr>
<th>Tumor</th>
<th>miR</th>
<th>Chromosome location</th>
<th>Functional Effect</th>
<th>Targeted gene(s) studied</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Overexpression</td>
<td>Inhibition</td>
</tr>
<tr>
<td>PTC</td>
<td>221 ↑</td>
<td>X</td>
<td>↑ colony formation</td>
<td>↓ cell growth</td>
</tr>
<tr>
<td></td>
<td>222 ↑</td>
<td>Xp11.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>146 ↑</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>181b ↑</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FTC</td>
<td>197 ↑</td>
<td>1p13.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>346 ↑</td>
<td>10q23.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>192 ↑</td>
<td>11q13.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>328 ↑</td>
<td>16q22.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATC</td>
<td>17-92 ↑</td>
<td>3p21</td>
<td>↓ cell growth</td>
<td></td>
</tr>
<tr>
<td></td>
<td>106a,b ↑</td>
<td>11q24.1</td>
<td>↓ cell growth</td>
<td></td>
</tr>
<tr>
<td></td>
<td>26a ↓</td>
<td>3p21</td>
<td>↓ cell growth</td>
<td></td>
</tr>
<tr>
<td></td>
<td>125b ↓</td>
<td>3p21</td>
<td>↓ cell growth</td>
<td></td>
</tr>
<tr>
<td></td>
<td>138 ↓</td>
<td>Xp11.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>221 ↑</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>222 ↑</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Refs: (He et al., 2005, Mitomo et al., 2008, Pallante et al., 2006, Takakura et al., 2008, Visone et al., 2007a, Visone et al., 2007b, Weber et al., 2006) ↑ = increased; ↓ = reduced
Table 4: Proteins expression in anaplastic thyroid carcinoma

<table>
<thead>
<tr>
<th>Protein</th>
<th>Cell line</th>
<th>Tumor</th>
<th>Cell line</th>
<th>Tumor</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transcription</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PPAR-γ</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td>(Aiello et al., 2006, Copland et al., 2006b, Hayashi et al., 2004)</td>
</tr>
<tr>
<td>HNF-1α</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td>(Xu J. et al., 2008)</td>
</tr>
<tr>
<td>TTF-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(Bejarano et al., 2000, Miettinen & Franssila, 2000, Zhang P. et al., 2006)</td>
</tr>
<tr>
<td>TTF-2</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td>(Zhang P. et al., 2006)</td>
</tr>
<tr>
<td>Pax 8</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td>(Zhang P. et al., 2006)</td>
</tr>
<tr>
<td>CBX7</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td>(Pallante et al., 2008)</td>
</tr>
<tr>
<td>Id1</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>(Kebebew et al., 2004)</td>
</tr>
<tr>
<td>YB-1</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td>(Ito et al., 2003b)</td>
</tr>
<tr>
<td>HMGI(Y)</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>(Scala et al., 2000)</td>
</tr>
<tr>
<td>Fra-1</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>(Chiappetta et al., 2000)</td>
</tr>
<tr>
<td>C-myc</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td>(Kurihara et al., 2004)</td>
</tr>
<tr>
<td>Signalling Pathway</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EGF-Receptor</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td>(Elliott et al., 2008, Ensinger et al., 2004, Schiff et al., 2004, Wiseman et al., 2007b)</td>
</tr>
<tr>
<td>CXCR4</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td>(De Falco et al., 2007)</td>
</tr>
<tr>
<td>pAKt</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>(Santarpia et al., 2008)</td>
</tr>
<tr>
<td>pERK</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>(Santarpia et al., 2008)</td>
</tr>
<tr>
<td>Mitosis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aurora kinases</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td>(Sorrentino et al., 2005, Ulisse et al., 2006)</td>
</tr>
<tr>
<td>TACC3</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td>(Ulisse et al., 2007)</td>
</tr>
<tr>
<td>Kα1 tubulin</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>(Takano et al., 2001)</td>
</tr>
<tr>
<td>Topoisomerase-11</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>(Wiseman et al., 2007a)</td>
</tr>
<tr>
<td>Proliferation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ki-67</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td>(Ito et al., 2003b, Saltman et al., 2006, Tallini et al., 1999, Wiseman et al., 2007a)</td>
</tr>
<tr>
<td>OEATC-1</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>(Mizutani et al., 2005)</td>
</tr>
<tr>
<td>RbAp48</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td>(Pacifico et al., 2007)</td>
</tr>
<tr>
<td>Cell Cycle</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cyclin D1</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td>(Kurihara et al., 2004, Lee et al., 2008, Wang S. et al., 2000, Wiseman et al., 2007b)</td>
</tr>
<tr>
<td>Cyclin D3</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td>(Baldassarre et al., 1999)</td>
</tr>
<tr>
<td>Cyclin E</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td>(Wiseman et al., 2007b)</td>
</tr>
<tr>
<td>p21</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td>(Saltman et al., 2006)</td>
</tr>
<tr>
<td>p27</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td>(Baldassarre et al., 1999, Tallini et al., 1999)</td>
</tr>
<tr>
<td>Apoptosis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IAPs</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td>(Ito et al., 2003a, Tirro et al., 2006)</td>
</tr>
<tr>
<td>bcl2</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td>(Saltman et al., 2006, Wiseman et al., 2007a)</td>
</tr>
<tr>
<td>DJ-1</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td>(Zhang Hai-Yan et al., 2008)</td>
</tr>
<tr>
<td>NF-κB</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>(Meng Z. et al., 2008, Starenki et al., 2004)</td>
</tr>
<tr>
<td>AlphaB-crystallin</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td>(Mineva et al., 2005)</td>
</tr>
<tr>
<td>NGAL</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td>(Iannetti et al., 2008)</td>
</tr>
<tr>
<td>Adhesion</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E-cadherin</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td>(Dahlin et al., 1998, Husmark et al., 1999, Motti et al., 2005, Wiseman et al., 2006, Wiseman et al., 2007a)</td>
</tr>
<tr>
<td>β-catenin</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>(Wiseman et al., 2007b)</td>
</tr>
<tr>
<td>ILK-1</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td>(Younes et al., 2005)</td>
</tr>
<tr>
<td>FAK</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td>(Kim S. J. et al., 2004)</td>
</tr>
<tr>
<td>Tumor suppressor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p53</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>(Saltman et al., 2006, Wiseman et al., 2007a)</td>
</tr>
<tr>
<td>Rb</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(Motti et al., 2005)</td>
</tr>
<tr>
<td>p16</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td>(Lee et al., 2008)</td>
</tr>
<tr>
<td>PTEN</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td>(Hou et al., 2008)</td>
</tr>
<tr>
<td>Targets</td>
<td>Agonists</td>
<td>Antagonists</td>
<td>References</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>----------</td>
<td>-------------</td>
<td>------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transcription</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PPAR-γ</td>
<td>TZDs</td>
<td>GW9662; siRNA</td>
<td>(Aiello et al., 2006, Antonelli et al., 2008, Copland et al., 2006b, Hayashi et al., 2004)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HMG(Y)</td>
<td>Adenoviral-antisense</td>
<td></td>
<td>(Scala et al., 2000)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Signalling Pathways</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EGF-Receptor</td>
<td>Gefitinib</td>
<td></td>
<td>(Kurebayashi et al., 2006, Nobuhara et al., 2005)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EGFR/VEGFR</td>
<td>AEE788</td>
<td>Cetuximab</td>
<td>(Hoffmann et al., 2007, Kim S. et al., 2005a)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EGFR</td>
<td></td>
<td>Imatinib</td>
<td>(Hoffmann et al., 2007)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BCR-ABL; c-KIT</td>
<td>Imatinib</td>
<td></td>
<td>(Dziba & Ain, 2004, Kurebayashi et al., 2006, Podtcheko et al., 2003, Rao et al., 2006)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAPK(MEK)</td>
<td>PD0325901; AZD6244</td>
<td>TZD (↓P-Akt)</td>
<td>(De Falco et al., 2007)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CXCR4</td>
<td>siRNA; AMD3100</td>
<td>AKT inhibitor IV</td>
<td>(Hou et al., 2008)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>JNK</td>
<td>SP600125</td>
<td></td>
<td>(Bulgin et al., 2006)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Farnesyl transferase</td>
<td></td>
<td>Manumycin</td>
<td>(Xu G. et al., 2001)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mitosis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aurora kinases</td>
<td>Aurora kinase inhibitor</td>
<td></td>
<td>(Sorrentino et al., 2005)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Microtubules</td>
<td>VX-680</td>
<td>Paclitaxel; combretastatin</td>
<td>(Ain et al., 1996, Catalano et al., 2007, Dziba et al., 2002, Pushkarev et al., 2004, Voigt et al., 2005)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proliferation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OEATC-1</td>
<td>siRNA</td>
<td></td>
<td>(Mizutani et al., 2005)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RbAp48</td>
<td>siRNA</td>
<td></td>
<td>(Pacifico et al., 2007)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cell Cycle</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cell cycle</td>
<td>Gemcitabine</td>
<td></td>
<td>(Voigt et al., 2000)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cyclins</td>
<td>CCND1 siRNA; Imatinib; plitidepsin</td>
<td></td>
<td>(Bravo et al., 2005, Lee et al., 2008, Podtcheko et al., 2003)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CdK inhibitors</td>
<td>P53</td>
<td></td>
<td>(Aiello et al., 2006, Blagosklonny et al., 1998, Copland et al., 2006b)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BMP-7</td>
<td></td>
<td></td>
<td>(Franzen & Heldin, 2001)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apoptosis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IAPs</td>
<td>siRNA; Smac</td>
<td></td>
<td>(Tirro et al., 2006)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NF-κB</td>
<td>DHMEQ</td>
<td>alR3 antibody</td>
<td>(Meng Z. et al., 2008)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IGF-1</td>
<td>siRNA</td>
<td></td>
<td>(Poulaki et al., 2002)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DJ-1</td>
<td>AEE788</td>
<td>Imatinib</td>
<td>(Zhang Hai-Yan et al., 2008)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PPAR-γ</td>
<td>VX-680</td>
<td>QLT0267</td>
<td>(Aiello et al., 2006, Copland et al., 2006b)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EGFR/VEGFR</td>
<td></td>
<td></td>
<td>(Kim S. et al., 2005a)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BCR-ABL; c-KIT</td>
<td></td>
<td></td>
<td>(Kurebayashi et al., 2006)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aurora kinase</td>
<td></td>
<td></td>
<td>(Arlot-Bonnemains et al., 2008)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Integrin-linked kinase</td>
<td></td>
<td></td>
<td>(Younes et al., 2005)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Integulin</td>
<td>siRNA</td>
<td></td>
<td>(Iannetti et al., 2008)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NGAL</td>
<td>siRNA; mithramycin</td>
<td></td>
<td>(Salvatore et al., 2007)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polo-like kinase 1</td>
<td></td>
<td></td>
<td>(Yu et al., 2007)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DUSP26</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Migration</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Autotaxin</td>
<td>Autotaxin</td>
<td>IL1β;iL4;TGF-β</td>
<td>(Kehlen et al., 2004)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VEGFR2</td>
<td></td>
<td>VEGFR-2 inhibitor1</td>
<td>(Balthasar et al., 2008)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Protein degradation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proteosomes</td>
<td>Bortezomib</td>
<td></td>
<td>(Conticello et al., 2007, Mitsiades et al., 2006)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Epigenetic</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Histone acetylation</td>
<td>Valproic acid</td>
<td></td>
<td>(Catalano et al., 2007, Catalano et al., 2006, Kitazono et al., 2001, Xing, 2007)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Methylation</td>
<td>depsipeptide</td>
<td></td>
<td>(Husmark et al., 1999, Schagdarsurengin et al., 2006, Schagdarsurengin et al., 2002)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5-aza-dCR</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 6: Preclinical in vivo xenograft studies in anaplastic thyroid carcinoma

<table>
<thead>
<tr>
<th>Reference</th>
<th>Cell line</th>
<th>Agent</th>
<th>Growth Inhibition (%)</th>
<th>Treatment (days)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Kurebayashi et al., 2006)</td>
<td>KTC-3</td>
<td>Imatinib</td>
<td>44%</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Gefitinib</td>
<td>53%</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Both</td>
<td>62%</td>
<td>14</td>
</tr>
<tr>
<td>(Podtcheko et al., 2003)</td>
<td>FRO</td>
<td>Imatinib</td>
<td>~ 67%</td>
<td>14</td>
</tr>
<tr>
<td>(Nobuhara et al., 2005)</td>
<td>ACT-1</td>
<td>Gefitinib</td>
<td>>90%</td>
<td>28</td>
</tr>
<tr>
<td>(Kim S. et al., 2005a)</td>
<td>K4</td>
<td>AEE788, Paclitaxel, Both</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Leboeuf et al., 2008)</td>
<td>Cal62</td>
<td>AZD6244</td>
<td>~75%</td>
<td>27</td>
</tr>
<tr>
<td>(Dziba et al., 2002)</td>
<td>BHT101</td>
<td>Combretastatin A4P</td>
<td>~ 60%</td>
<td>20</td>
</tr>
<tr>
<td>(De Falco et al., 2007)</td>
<td>BHT101</td>
<td>AMD3100</td>
<td>92%</td>
<td>21</td>
</tr>
<tr>
<td>(Xu G. et al., 2001)</td>
<td>Hth74</td>
<td>Manumycin, Paclitaxel, Both</td>
<td>~ 100%</td>
<td>20</td>
</tr>
<tr>
<td>(Lin et al., 2008)</td>
<td>8505C</td>
<td>Mutant vaccinia</td>
<td>~96%</td>
<td>90</td>
</tr>
<tr>
<td>(Libertini et al., 2007)</td>
<td>FRO</td>
<td>Lovastatin dl1520 (ONYX-015), Both</td>
<td>~ 23%</td>
<td>48</td>
</tr>
<tr>
<td>(Lannetti et al., 2008)</td>
<td>FRO</td>
<td>NGAL siRNA</td>
<td>~97%</td>
<td></td>
</tr>
<tr>
<td>(Meng Z. et al., 2008)</td>
<td>FRO</td>
<td>DHMEQ</td>
<td>>90%</td>
<td>14</td>
</tr>
</tbody>
</table>
Table 7: Clinical characteristics and survival in anaplastic thyroid carcinoma

<table>
<thead>
<tr>
<th>Years</th>
<th>Patient (M/F)</th>
<th>Age (range)</th>
<th>Survival (mos)</th>
<th>Survival one year (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(McIver et al., 2001)</td>
<td>1949-1999</td>
<td>54/80</td>
<td>67 (mean)</td>
<td>3</td>
</tr>
<tr>
<td>(Junor et al., 1992)</td>
<td>1961-1986</td>
<td>27/64</td>
<td>70 (median) (38-92)</td>
<td>5</td>
</tr>
<tr>
<td>(Levendag et al., 1993)</td>
<td>1970-1986</td>
<td>17/34</td>
<td>67 (mean) (31-89)</td>
<td>2.7-3.4</td>
</tr>
<tr>
<td>(Voutilainen et al., 1999)</td>
<td>1967-1994</td>
<td>7/26</td>
<td>66 (mean) (36-89)</td>
<td>2.5</td>
</tr>
<tr>
<td>(Tan et al., 1995)</td>
<td>1968-1992</td>
<td>10/11</td>
<td>65 (mean) (38-83)</td>
<td>4.5</td>
</tr>
<tr>
<td>(Pierce et al., 2002)</td>
<td>1969-1999</td>
<td>22/45</td>
<td>73 (median) (40-92)</td>
<td>6</td>
</tr>
<tr>
<td>(Kim J. H. & Leeper, 1983)</td>
<td>1979-1983</td>
<td>3/6</td>
<td>69 (mean) (54-79)</td>
<td>10</td>
</tr>
<tr>
<td>(Kobayashi et al., 1996)</td>
<td>1971-1993</td>
<td>9/28</td>
<td>68 (median) (34-82)</td>
<td>3</td>
</tr>
<tr>
<td>(Schlumberger et al., 1991)</td>
<td>1981-1991</td>
<td>9/11</td>
<td>61 (median) (27-82)</td>
<td>--</td>
</tr>
<tr>
<td>(Mitchell et al., 1999)</td>
<td>1991-1995</td>
<td>9/8</td>
<td>71 (median) (51-85)</td>
<td>2.5</td>
</tr>
<tr>
<td>(Tennvall et al., 2002)</td>
<td>1984-1999</td>
<td>17/38</td>
<td>76 (median) (46-94)</td>
<td>3.5</td>
</tr>
<tr>
<td>(Haigh et al., 2001)</td>
<td>1973-1998</td>
<td>13/20</td>
<td>69 (median) (47-80)</td>
<td>3-43</td>
</tr>
<tr>
<td>(Besic et al., 2005)</td>
<td>1972-2003</td>
<td>58/130</td>
<td>68 (median)</td>
<td>3</td>
</tr>
<tr>
<td>(De Crevoisier et al., 2004)</td>
<td>1990-2000</td>
<td>12/18</td>
<td>59 (mean) (40-79)</td>
<td>10</td>
</tr>
<tr>
<td>(Wang Y. et al., 2006)</td>
<td>1983-2004</td>
<td>25/22</td>
<td>69 (median) (39-90)</td>
<td>5.6</td>
</tr>
<tr>
<td>(Brignardello et al., 2007)</td>
<td>2000-2005</td>
<td>9/18</td>
<td>70 (mean) (46-89)</td>
<td>3.9</td>
</tr>
<tr>
<td>(Ain et al., 2000)</td>
<td>1996-1999</td>
<td>13/6</td>
<td>58 (median) (47-86)</td>
<td>6</td>
</tr>
</tbody>
</table>