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Abstract

Prostate cancer is the primary cancer in males, with increasing global incidence rates 

making this malignancy a significant healthcare burden. Androgens not only promote 

normal prostate maturity but also influence the development and progression of prostate 

cancer. Intriguingly, evidence now suggests endogenous and exogenous oestrogens, in 

the form of phytoestrogens, may be equally as relevant as androgens in prostate cancer 

growth. The prostate gland has the molecular mechanisms, catalysed by steroid sulphatase 

(STS), to unconjugate and utilise circulating oestrogens. Furthermore, prostate tissue 

also expresses enzymes essential for local oestrogen metabolism, including aromatase 

(CYP19A1) and 3β- and 17β-hydroxysteroid dehydrogenases. Increased expression of 

these enzymes in malignant prostate tissue compared with normal prostate indicates that 

oestrogen synthesis is favoured in malignancy and thus may influence tumour progression. 

In contrast to previous reviews, here we comprehensively explore the epidemiological 

and scientific evidence on how oestrogens impact prostate cancer, particularly focusing 

on pre-receptor oestrogen metabolism and subsequent molecular action. We analyse 

how molecular mechanisms and metabolic pathways involved in androgen and oestrogen 

synthesis intertwine to alter prostate tissue. Furthermore, we speculate on whether 

oestrogen receptor status in the prostate affects progression of this malignancy.

Introduction

In the UK, prostate cancer is the number one male 
malignancy accounting for 25% of all new cancer 
diagnoses in men (Siegel et al. 2012). In 2011, there 
were almost 42,000 new cases with an age-standardised 
incidence rate of 104.7 per 100,000. Prostate cancer 
is the second leading cancer killer in UK men and 4th 
most common cause of cancer death in the general 
population. Similarly, in Europe, prostate cancer is the 
most common cancer in males and third most common 
cancer overall (Jacob & Henrik 2006). It is the third most 

common cause of cancer deaths in men and sixth overall. 
Currently, prostate cancer is the second most common 
cancer in males worldwide after lung cancer. However, 
it is predicted that prostate cancer will become the most 
common cancer in men globally (Parkin et al. 2001).

Survival statistics from prostate cancer have improved 
dramatically over the last four decades, which may be 
attributed to earlier detection and treatment granted by 
prostate-specific antigen (PSA) testing and transurethral 
resection of the prostate (TURP). The UK 10-year survival 
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has improved from 25% when diagnosed in 1970 to 84% 
in 2010 (Quaresma et al. 2015). Prostate cancer primarily 
affects the elderly with 99.9% of patients diagnosed over 
the age of 50 and the mean age at diagnosis being 73 
(Parkin et al. 1997). Furthermore, from autopsy studies of 
non-cancer-related deaths, there is histological evidence 
of prostate neoplasms in more than 50% of men in their 
50s (Sakr et al. 1993). As average male life expectancy 
gradually increases, it is foreseeable that men will live 
longer with the disease and may experience a poorer 
quality of life.

There are significant geographical variations between 
prostate cancer incidences around the world with up to a 
24-fold difference between the regions with the highest 
rates (in Australia, North America and Western Europe) 
and the lowest rates (in India, Japan and China) (Center 
et al. 2012). While some of the discrepancies might be 
explained by disparities in healthcare access, diagnostic 
methods, screening programmes and reporting systems, 
environment and lifestyle remain considerable factors. 
Studies comparing the incidence of prostate cancer in 
first- and second-generation Asian immigrants to USA 
with age-matched controls in their native countries have 
found that migrants traveling from low-risk countries 
to high-risk countries adopt the higher risk (Cook et al. 
1999). This advocates that environmental risk factors 
may have a higher precedence than genetic associations 
in determining risk of prostate cancer. Furthermore, 
environmental and lifestyle factors, diet in particular, 
fundamentally alter endogenous hormones including 
sex steroids (Barazani et al. 2014). Indeed, factors such as 
smoking, increased physical exercise and a vegetarian diet 
increased serum androgen concentrations in British men, 
while obesity, high-fat diet and sedentary occupation 
reduced serum androgen concentrations (Allen et  al. 
2002). Such hormonal changes have the propensity to 
subsequently affect tumour initiation and progression 
(Kolonel et al. 2004).

Sex steroids and prostate cancer

Both males and females produce sex steroid hormones; 
the predominant androgens are testosterone and the 
more biologically active dihydrotestosterone (DHT) and 
the predominant oestrogens are oestrone (E1) and the 
more biologically active oestradiol (E2). However, the 
ratio of the two hormones differs between the sexes 
significantly. In the prostate, androgens are required for 
normal development and function. However, the role of 
oestrogens in normal prostate development is ill defined, 

as biochemical mechanisms are still under investigation; 
the current dogma being that oestrogens are involved in 
the differentiation of epithelial tissue (Chen et al. 2012, 
Francis et al. 2013) and regulation of prostatic angiogenesis 
(Montico et al. 2013).

Androgens have been implicated in prostate 
carcinogenesis since 1941 when Huggins published his 
Nobel winning study showing testosterone injections 
exacerbate prostate cancer in patients with late-stage 
disease and androgen deprivation alleviated the disease 
(Huggins & Hodges 1941); this suggested prostate cancer 
as an androgen-dependent malignancy. The primary 
source of androgens in males is testosterone secreted by 
the testicles; however, the adrenal glands secrete 100–500 
times greater amounts of dehydroepiandrostrone sulphate 
(DHEAS), a testosterone precursor which can be converted 
peripherally in the prostate into testosterone and DHT 
(Labrie et al. 2005). Androgen ablation therapy is initially 
successful in the vast majority of prostate cancers, but 
relapse is common as tumours become castration resistant; 
they still, however, continue to express androgen receptors 
which respond to very low concentrations (as low as 
10 pM) of peripherally synthesised testosterone and DHT 
(Chen et al. 2004, Mohler et al. 2004). Using microarray 
experiments on LNCaP and LAPC4 cell lines, Chen 
and coworkers (2004) showed an increase in androgen 
receptor mRNA and protein expression in vitro and in vivo 
in castrated xenograft murine models which correlated 
with tumour growth. Increased expression of androgen 
receptors amplified signals from low levels of androgen 
ligands to confer castration resistance. Mohler and 
coworkers (2004) demonstrated using immunostaining 
and radioimmunoassays that activation of androgen 
receptors occurs even in human prostate cancer samples 
retrieved from chemically castrated patients. This explains 
why surgical or medical castration is not 100% effective.

Previously, second-line hormonal therapy has proven 
to improve survival in patients with castration-resistant 
disease, both before and after docetaxel chemotherapy. 
Both inhibition of steroidogenic enzyme CYP17A1 
using abiraterone and androgen receptor antagonism 
by enzalutamide have successfully ablated continued 
androgen receptor activation and prostate cancer growth 
(de Bono et al. 2011, Scher et al. 2012, Ryan et al. 2013, 
Beer et al. 2014). However, as with other androgen ablation 
therapy, resistance to abiraterone and enzalutamide 
inevitably develops.

Even though molecular mechanisms were not 
elucidated, oestrogens were traditionally considered 
to protect against prostate cancer. Therapeutic use of 
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oestrogens was based on their anti-androgenic effects. 
Huggins reported that exogenous oestrogens had 
protective properties mediated by a negative feedback 
effect on the hypothalamic–pituitary–gonadal (HPG) axis 
which reduced stimulation for androgen secretion from 
the testes (Huggins & Hodges 1941). Diethylstilbestrol 
(DES), a synthetic non-metabolised oestrogen, is still used 
in certain clinics as a non-first line therapy to chemically 
castrate patients with metastatic prostate cancer (Bosset 
et al. 2012, Clemons et al. 2013). DES negatively 
feedbacks on the pituitary gland to reduce the secretion 
of luteinising hormone, which reduces the stimulus for 
the testes to synthesise sex hormones. In addition to the 
effects oestrogens have on the HPG axis, demonstrated 
by quantitative PCR, DES inhibits androgen-stimulated 
telomerase activity and gene expression and induces 
apoptosis in LNCaP and PC3 prostate cancer cell lines in 
both the presence and absence of androgens (Geier et al. 
2010). On the contrary, while DES is still licensed in the 
UK for treatment of prostate cancer, it is infrequently used 
as secondary treatment due to the accompanied high rates 
of cardiovascular toxicity (Malkowicz 2001).

Importantly, the interactions of oestrogens on 
androgen receptors should be considered. For example, 
E2 can activate both wildtype and, with greater efficacy, 
mutated (T877A) androgen receptors in LNCaP cells 
(Veldscholte et al. 1992, Yeh et al. 1998, Susa et al. 2015). 
Mutations of the androgen receptor are uncommon in the 
early stages of prostate cancer but are much more frequent 
in late-stage disease. In one study, out of 99 patients 
diagnosed with early-stage prostate cancer, none were 
found to have mutations in the androgen receptor. On 
the contrary, 8 tumours out of 38 patients with advanced 
prostate cancer were found to harbour androgen receptor 
mutations (Marcelli et al. 2000, Brooke & Bevan 2009). 
There is, however, mounting evidence that oestrogens 
may be involved in the initiation and progression of 
prostate cancer, although compelling evidence confirming 
oestrogen-binding affinity to AR is lacking.

Impact of endogenous oestrogens in 
prostate cancer

Males are exposed to a high oestrogen/androgen (E/T) 
ratio twice in their lifetime. The first is as a foetus, during 
the third trimester when the maternal E2 levels increase 
and foetal androgen levels decrease. Raised E2 levels 
stimulate the developing epithelial cells of the prostate 
to proliferate and also cause morphological changes. For 
example, the prostate glands of neonatal rats and mice 

show abnormal proliferation and cell structure when 
the pregnant mother is injected with E2 (Wernert et al. 
1990). This early exposure may imprint intracellular 
changes by modulating expression pathways of steroid 
enzymes and receptors as shown in rat models, where 
the response to endogenous androgens and oestrogens 
becomes abnormal, thus predisposing the animal to 
prostate cancer after sexual maturation (Rajfer & Coffey 
1978). Moreover, studies in mice show that when exposed 
to high levels of oestrogens in utero, foetal prostate 
tissue develops abnormalities including intraepithelial 
neoplasia and predisposition to carcinogenesis in adult 
life (Prins et al. 2006). This hypothesis is supported 
by epidemiological evidence obtained from African–
American men having twice as high a risk of developing 
prostate cancer than comparable Caucasian men, which 
correlates with African–American women having a higher 
serum oestrogen level during pregnancy compared with 
Caucasian women (Henderson et al. 1988).

The second time men are exposed to a high E/T ratio 
is during old age when serum testosterone decreases, 
partly due to a dampened HPG axis and partly due to 
reduced Leydig cell function in the testes. In addition to 
this, sex hormone-binding globulin (SHBG), which has 
a higher affinity to testosterone than E2 (Knochenhauer 
et al. 1998), also increases with age which further 
decreases free serum testosterone relative to free serum 
E2 (Samaras et al. 2012). Furthermore, there is evidence 
that E1 and E2 not only remain at the same level, but 
in fact increase with age even when accounted for BMI 
and other metabolic diseases (Jasuja et al. 2013). While 
the evidence for an association between serum oestrogen 
concentration and risk of prostate cancer is unclear and 
inconsistent, increased serum oestrogen concentrations 
may stimulate the prostate stroma and epithelia to 
proliferate and subsequently become neoplastic. Indeed, 
a higher oestrogen:androgen ratio stimulates proliferation 
of normal prostate stromal (PrSC) and normal epithelial 
(PrEC) cell lines in vitro (King et al. 2006).

Another interesting population which is exposed to a 
high E/T ratio are transsexual male to female individuals. 
Often, in this group of former males, individuals are 
orchiectomised and then supplemented with anti-
androgens to relinquish masculine secondary sex 
characteristics. They are also supplemented with oestro-
gens to acquire and enhance feminine characteristics. 
Their prostates, however, remain unadulterated. A study 
observing such a cohort of transsexual persons for over 
30 years has not identified any increase in risk for prostate 
cancer (Gooren & Morgentaler 2014). However, the study 
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has suggested that when presenting, these patients are 
more likely to be diagnosed with a later stage disease. 
One limitation admitted by the authors is that the 
majority of the cohort has not reached the mean age at 
which prostate cancer is typically diagnosed (Gooren & 
Morgentaler 2014). Observations made to this cohort over 
the next two or three decades will be most enlightening 
in ascertaining whether oestrogens have any significant 
effects in the development of prostate cancer.

Oestrogen metabolism in adipose and 
prostate cancer

While in pre-menopausal females the primary source of 
oestrogens is the ovaries, in males, there is no central 
organ which produces substantial quantities of E2. 
Instead, peripheral conversion of oestrogen precursors is 
the main source of oestrogen in men. Local synthesis of 
E1 and E2 is regulated by a plethora of enzymes. DHEA 
secreted from the zona reticularis of the adrenal glands, 
and stored in the blood as a reservoir as DHEAS, is the 
ultimate precursor. Adipose tissue is another notable 
source of oestrogen synthesis (Cui et al. 2013). White 
adipose tissues (the predominant type in obesity) express 
significant quantities of cytochrome P450 aromatase 
enzyme (CYP19A1) in the abdominal adipose fat of 
male human samples, which is the final catalyst in the 
conversion of androgens to oestrogens (Wang et al. 2013, 
Polari et al. 2015). There is also a positive correlation 
between the amount of visceral adipose tissue and serum 
E2 levels as shown in a study of 229 men with a mean 
age of 53.6 years, where visceral fat was measured using 
magnetic resonance imaging (Gautier et al. 2013).

There have been conflicting reports as to whether 
obesity is a risk factor for prostate cancer, as some suggest it 
decreases risk while others have found the opposite. Allott 
and coworkers have summarised the findings published 
between 1991 and 2012 in their review and conclude 
obesity is associated with aggressive prostate cancer (Allott 
et al. 2013). There is further robust evidence that obese 
patients are more likely to present with aggressive high-
grade prostate cancer (De Nunzio et al. 2013, Vidal et al. 
2014). It is possible that the risk associated with obesity 
may in fact be due to elevated circulating oestrogen 
levels secondary to increased adipose deposition. If this 
is the case, it would parallel the effects of oestrogen that 
have been observed in colorectal cancer where oestrogen 
exposure in the form of hormone replacement therapy or 
oral contraceptives is initially protective against colorectal 
cancer, but when patients present, they present with a later 

stage disease (Foster 2013). The intra- and extracellular 
handling and metabolism of oestrogens within the 
prostate gland may clarify what effects oestrogens have 
on tumours. However, studies are lacking regarding the 
exact intra-tumoural metabolism of oestrogens in prostate 
cancer cells and human prostate cancer tissue.

Impact of exogenous oestrogen on  
prostate cancer

Exogenous oestrogen intake and subsequent 
availability to the prostate should be considered when 
determining whether oestrogens affect the development 
and progression of prostate cancer. A Western diet 
comprising high meat, saturated fat and dairy products 
has been associated with increased risk of prostate cancer 
as highlighted by numerous epidemiological studies 
(Howell 1974, Whittemore et al. 1995, Grönberg 2003). 
Additionally, it has been observed that such a Western 
diet is more likely to cause men diagnosed with prostate 
cancer to die from the disease when compared with a 
diet rich in fruits, vegetables and whole grain cereals 
(Yang et  al. 2014). Supporting this, it has been widely 
speculated that dietary oestrogenic compounds from 
plant sources, termed phytoestrogens, are protective 
against prostate cancer and are the reason behind 
lower incidence rates in East Asia, where per capita 
consumption of phytoestrogen-rich foods, such as soya 
beans, is considerably higher than the Western world 
(Strom et al. 1999, Adlercreutz et al. 2000, Goetzl et al. 
2007). It is possible that phytoestrogens reduce the risk of 
prostate cancer through multiple mechanisms. In rodent 
models, phytoestrogens can upregulate SHBG synthesis 
in the liver leading to a higher circulating concentration 
(Pilšáková et al. 2010). Increased SHBG is anti-androgenic 
as it binds to free testosterone with a higher affinity than 
oestrogens (Knochenhauer et  al. 1998) implementing 
a net reduction in testosterone relative to E2 (Ronde 
et al. 2005). This reduction in androgen is thought to 
be important in the reduction of risk. In addition to 
chelation of free testosterone via SHBG, phytoestrogens 
have a negative feedback effect on the HPG axis directly 
leading to reduced secretion of luteinising hormone 
and consequently reduced stimulation of androgen and 
oestrogen syntheses (Goetzl et al. 2007).

Phytoestrogen compounds are similar enough to 
endogenous oestrogens to be able to bind to oestrogen 
receptors (ER) and evoke ligand-specific intracellular 
responses (Usui 2006). Preference for different types of 
nuclear ER varies between phytoestrogens (see section on 
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oestrogen receptors). Isoflavones and coumestans are two 
main categories of phytoestrogens and are structurally 
similar to E2 (Fig. 1). The prostate cancer cell lines LNCaP 
and DU145 are more sensitive to apoptotic factors 
when treated with isoflavones in vitro. A dose–response 
relationship between concentration of biochanin A 
and apoptosis was observed using cytotoxicity and 
lactate dehydrogenase release assays, flow cytometry 
and fluorescence microscopy (Szliszka et al. 2013). 
Coumestans are able to induce caspase-dependent 

apoptosis in LNCaP, DU145 and PC3 cells. When treated 
with wedelolactone, a plant-derived coumestan, there was 
dose-dependent apoptosis in androgen-sensitive cell lines 
(LNCaP) and androgen-independent cell lines (DU145 
and PC3). However, normal non-cancerous PrEC prostate 
epithelial cells were not affected as harshly showing 90% 
cell viability compared with circa 20% in cancerous cell 
lines at concentrations of 30 µM (Sarveswaran et al. 2012). 
While in vitro evidence argues that phytoestrogens are 
protective against prostate cancer, clinical trials looking 
at the relationship between consumption of dietary 
phytoestrogens and progression of prostate cancer have 
been inconclusive (Goetzl et  al. 2007). One double-
blind randomised control trial in which 81 healthy 
men were either given a soy protein drink with high 
isoflavone concentration (83 mg/day) or a drink with 
low isoflavone concentration (3 mg/day) showed no 
significant difference in PSA over 12 months (Adams et al. 
2004). Another trial offering men with confirmed prostate 
cancer who had either failed medical/surgical therapy or 
had chosen active surveillance a high dose (450 mg/day)  
oral isoflavone supplement for 6 months showed only 
a clinically insignificant improvement in PSA in the 
active surveillance group with no difference in the failed 
therapy group (deVere White et al. 2004). Furthermore, 
a study following up 3628 men with diagnosed prostate 
cancer for a median duration of 11.5 years showed an 
increased risk of advanced prostate cancer (HR: 1.62) 
but a reduced risk of non-advanced prostate cancer  
(HR: 0.88) in the higher dietary intake of isoflavones 
group. Dietary intake of phytoestrogens was measured 
using a validated food frequency questionnaire, and so 
exact doses of phytoestrogens are subject to variation 
(Reger et  al. 2015). This preliminary evidence could 
infer that dietary phytoestrogens might protect against 
initiation of prostate cancer, and, however, may promote 
the progression of advanced prostate cancer.

Steroid metabolism in the prostate

Androgens

The metabolism of oestrogens and oestrogen precursors 
is important for the availability of biologically active 
E2 to prostate cancer cells. Oestrogens are synthesised 
from androgens which themselves are synthesised from 
progestogens (Khurana 2008). In addition to circulating 
androgens secreted from the testes, normal prostate tissues 
have the potential to produce androgens from circulating 
C19 steroids DHEA and androstenedione (Fig.  2).  

Figure 1
Molecular similarities between phytoestrogens and E2. E2 contains the 
cyclopenta[α]phenanthrene ring structure common to all steroid 
molecules. Isoflavones and coumestans are two common categories of 
phytoestrogens and have a molecular structure similar to E2. As a result, 
phytoestrogens can also bind and activate the oestrogen receptors.  
A full colour version of this figure is available at http://dx.doi.org/10.1530/
ERC-16-0118.
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There have been conflicting reports on the possibility of 
prostate cancer to synthesise androgens de novo through 
the conversion of progestogens via cytochrome P450 17A1 
(17-hydroxylase and 17, 20 lyase enzyme (CYP17A1)). 
In prostate cancer, the expression of cytochrome P450 
17A1 was reportedly increased in LNCaP and LuCaP cells 
and human prostate tissue samples ascertained by PCR 
and immunoblotting (Locke et al. 2008, Montgomery 
et al. 2008); however, not all studies support this (Ellem 
& Risbridger 2009, Hofland et al. 2010). Although DHT 
formation from cholesterol was detected using mass 
spectrometry in castration-resistant prostate cancer 
(CRPC) models in one study (Locke et  al. 2008), these 
steroid fluxes have not been confirmed quantitatively to 
date in either in vitro or in vivo models.

Another key enzyme in the synthesis of 
biologically active androgens and oestrogens is 
3-betahydroxysteroid dehydrogenase (3β-HSD), which 
converts dehydroepiandrosterone and androstenediol to 
androstenedione and testosterone, respectively (White 
et al. 2013). 3β-HSD is expressed in the normal human 
prostate, with immunoblotting revealing that the 
highest concentrations are found in basal epithelial cells  
(Luu-The et al. 2008). Certainly, in mouse xenograft 

studies using the CRPC LAPC4 cell line, expression of 
3β-HSD is increased within the tumour in addition to 
AKR1C3 and 17β-HSD3 (Chang et al. 2011), although its 
mRNA expression almost completely mutually excludes 
that of CYP19A1 (Hofland et al. 2010).

Inhibitors of 3β-HSD have been explored as an 
androgen deprivation technique as they are effective in 
decreasing proliferation in androgen-sensitive LNCaP or 
CRPC cell lines 22Rv1, VCaP and PC346C in vitro (Evaul 
et al. 2010, Kumagai et al. 2013). Furthermore, abiraterone 
was found to inhibit 3β-HSD activity in addition to 
CYP17A1 in prostate cancer cell lines and isolated yeast 
microsomes (Li et al. 2012). This mechanism might 
rely on abiraterone being converted to the more active 
Δ(4)-abiraterone (D4A) within the prostate gland by  
3β-HSD itself (Li et al. 2015b). Further research into 3β-HSD 
inhibition is currently being pursued; however, alternative 
pathways which bypass androstenedione synthesis exist 
and so 3β-HSD function is not strictly necessary.

An alternative pathway has been demonstrated 
by which synthesis of DHT within the prostate may 
bypass testosterone and instead be synthesised by the 
reduction of androstenedione by 5α-reductase SRD5A1  
to 5α-androstanedione, which is converted to DHT by  

Figure 2
Oestrogen and androgen synthesis pathways. Intra-tumoural E2 can be formed from desulphation and reduction of circulating oestrone-sulphate (E1S) 
by steroid sulphatase (STS) and 17β-hydroxysteroid dehydrogenase (HSD). Alternatively, oestrogens can be produced from androstenedione or 
testosterone by aromatase. Aromatase competes with 5α-reductase (SRD5A1), responsible for potentiating androgens, for these substrates. DHEA, the 
precursor for androstenedione, is most likely derived from the large pool of circulating DHEAS by STS, as intra-tumoural synthesis from progestogens 
remains disputable. A full colour version of this figure is available at http://dx.doi.org/10.1530/ERC-16-0118.
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17β-HSD5. Mass spectrometry has shown that even in 
patients on anti-androgen therapy with very low serum 
testosterone levels, intra-tumoural DHT concentrations 
remain at the pre-treatment level (Chang et  al. 2011,  
Sharifi & Auchus 2012). 17β-HSD-5, also known as 
AKR1C3, appears to be the key enzyme responsible 
for intra-tumoural androgen production in CRPC. Its 
expression in LNCaP, DU145 and PC3 cells is potently 
stimulated by androgen deprivation in vitro and in humans 
in vivo (Ellem et al. 2004, Ellem & Risbridger 2009), and 
this secures continued production of testosterone and 
DHT from circulating adrenal androgens. Local growth 
factor activin A was shown to be a key intermediate in the 
castration-induced rise of AKR1C3 expression levels and 
intra-tumoural testosterone production as observed in 
LNCaP, VCaP and PC3 cells. The concentration of activin 
A and testosterone were also shown to be increased in 
the cultured supernatants, as measured by ELISA and 
mass spectrometry (Hofland et al. 2011). 17β-HSD-5 
has also been implicated in enzalutamide resistance to  
anti-androgen therapy. Knockdown of 17β-HSD-5 using 
shRNA or inhibition with indomethacin has shown to 
resensitise enzalutamide-resistant cells in vitro and in vivo 
(Liu et al. 2015).

Peripheral oestrogen metabolism in prostate cancer

As mentioned previously, aromatase is a key enzyme 
required for oestrogen synthesis from androgen precursors. 
Aromatase converts androstenedione and testosterone 
to E1 and E2, respectively (White et  al. 2013). The local 
synthesis of E2 within the prostate has previously been 
debated as not all experiments have identified aromatase 
expression in normal prostate tissue (Ellem et al. 2004). 
However, it has been demonstrated in human samples by 
substrate conversion assays and mass spectrometry that E2 
synthesis does occur in prostate cancer cells (and benign 
prostatic hyperplasia) via aromatisation (Härkönen 
& Mäkelä 2004, Ellem & Risbridger 2009). In normal 
prostate, aromatase is expressed by the stromal tissue 
but not the epithelial cells; however, once malignant, 
epithelial cells also express aromatase (Ellem & Risbridger 
2007). Aberrant expression and activity of aromatase is 
crucial in the pathophysiology of endometrial and breast 
cancers where an imbalance of oestrogen is a key factor 
in tumour growth (Cunha 1994, Chen 1998). As with the 
developmental similarities between breast and prostate 
tissues (Ellem & Risbridger 2010), abnormal aromatase 
activity also plays a major role in breast and prostate 
tumourigeneses (Ellem & Risbridger 2010). Tumourigenic 

growth factors including epidermal growth factor and 
transforming growth factor-1 can modulate aromatase 
activity in androgen-sensitive LNCaP cells lines leading 
to decreased oestrogen synthesis (Block et al. 1996). 
Furthermore, the expression of aromatase is up to 30-fold 
greater in metastatic prostate cancer compared with 
primary tumours (Miftakhova et al. 2016). In addition, 
overexpression of aromatase increased the progression 
of bony metastasis in xenograft experiments where nude 
mice were injected with PC3 cell lines transfected to 
overexpress aromatase (Miftakhova et al. 2016).

Consequently, the use of aromatase inhibitors for the 
treatment of prostate cancer has been investigated many 
times in patient cohorts. The first-generation aromatase 
inhibitor aminoglutethimide is non-selective and showed 
poor objective responses including serum PSA levels 
and disease stability in some studies while showing a 
significant increase in survival in others (Santen et al. 
1997). One study treated 58 castrated men with advanced 
prostate cancer resistant to conventional therapy with 
500–750 mg daily aminoglutethimide; 11 men showed an 
objective response with a mean remission of 10 months 
and a further two showed disease stabilisation for a mean 
7 months (Murray & Pitt 1985). The second-generation 
aromatase inhibitor, 4-hydroxyandrostenedione, showed 
good subjective responses in 18 out of 25 patients with 
advanced CRPC, particularly alleviation of bone pain in 
prostate metastases. However, the objective responses 
were still poor with a reduction in tumour volume seen 
in only three patients, and all patients progressed to have 
skeletal metastasis (Davies et al. 1992). A Phase II clinical 
study looking at the effects of oral letrozole, a third-
generation aromatase inhibitor more commonly used in 
the treatment of hormone-dependent breast cancer, in 
43 men with CRPC showed no significant disease regression 
with serum PSA decreasing by more than 50% in only one 
patient and decreasing by less than 50% in one further 
patient (Smith et al. 2002). A very similar conclusion 
was drawn from clinical studies looking at anastrazole, 
another third-generation aromatase inhibitor, where 
out of 14 patients with CRPC, none showed a decrease 
in serum PSA, and mild bone pain relief was reported by 
only two patients (Santen et al. 2001). While aromatase 
is of utmost importance in local oestrogen synthesis, 
it appears as though therapeutic approaches targeting 
aromatase may be futile in treating prostate cancer. An 
alternative possibility is that E2 is not synthesised from 
androgens within the prostate but instead is converted 
from systemic sulphated E1 within the prostate via steroid 
sulphatase (STS).

http://dx.doi.org/10.1530/ERC-16-0118
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STS is widely expressed in almost all peripheral tissues 
and is responsible for hydrolysing sulphate moieties off of 
circulating sulphate-conjugated steroids in order to make 
them biologically active (Mueller et al. 2015). Oestrone 
sulphate (E1S) is the most abundant circulating oestrogen 
in adult humans (Muir et al. 2004) with plasma levels 
between 2 and 4 nmol/L in men (Mueller et  al. 2015), 
and while oestradiol sulphate also exists, plasma levels 
are very low. Furthermore, serum E1S levels have been 
correlated with increased risk of prostate cancer. In a 
cohort study of 5995 men aged over 65, the mean serum 
E1S levels in the 275 patients who developed prostate 
cancer were significantly higher than those who did not 
develop prostate cancer (Daniels et al. 2010).

Before sulphated oestrogens can be unconjugated by 
intracellular STS, transport of sulphated oestrogens into 
cells requires the expression of organic anion transporter 
peptides (OATP) (Raftogianis et al. 2000), and indeed, 
several different OATPs involved in the transport of E1S 
are expressed in prostate cancers (Wright et al. 2011, 
Buxhofer-Ausch et al. 2013, Giton et  al. 2015). STS has 
been shown to be expressed in normal human prostate 
tissue (Reed et al. 2005), prostate cancer cell lines LNCaP, 
DU-145 and PC3 (Nakamura et al. 2006) and in primary 
prostate homogenates (Klein et al. 1989). Furthermore, 
one study found that STS is expressed in the majority 
of localised prostate cancers showing higher expression 
in malignant tissues compared with benign (Nakamura 
et al. 2006). The activity of STS has been proven 
within the human prostate for the desulphation of 
dehydroepiandrosterone sulphate (DHEAS) into DHEA, 
an androgen precursor (Farnsworth 1973). Moreover, E1 
synthesis from desulphation of E1S within the prostate is 
putatively 10-fold greater than synthesis via aromatase 
(Nakamura et  al. 2006). The relevance of STS in cancer 
has been more extensively studied in breast cancer, 
where there is significantly higher expression of STS than 
in normal breast (Utsumi et al. 2000). Consequently, 
several STS inhibitors have been developed for the 
treatment of breast cancer, some of which have shown 
early promise (Stanway et al. 2006). Moreover, first- and 
second-generation STS inhibitors have been effective pre-
clinically against breast cancer (Foster et al. 2006, 2008, 
Purohit & Foster 2012). Meanwhile, investigations into 
the efficacy of STS inhibitors in prostate cancer have 
been undertaken. It has been observed that middle-aged 
rats treated with oral STS inhibitor, STX64, decreased the 
conversion of E1S to E1 (Roy et al. 2013, Giton et al. 2015).  
Neither study presented evidence of STS inhibition 
affecting any proliferative markers of proliferation; 

however, the latter study did demonstrate that STS 
inhibition in middle-aged rats prevented increase in 
prostate mass when treated with E1S + STX64 vs E1S 
alone, where prostate mass increased (Giton et al. 2015). 
An alternative conjugate of circulating oestrogens is 
glucuronide (Raftogianis et  al. 2000); however, research 
into oestrogen glucuronide transport into prostate cells 
and evidence of glucuronidase enzymes within the 
prostate are lacking.

Conversion of E1–E2 (and androstenedione to testo-
sterone) requires 17-betahydroxysteroid dehydrogenase  
(17β-HSD) enzymes (White et  al. 2013). 17β-HSDs 
enzymes are alcohol oxidoreductases which catalyse 
reduction (E1–E2) and oxidation (E2–E1) at carbon atom 
17. There are over 14 different isozymes of 17β-HSDs 
(17β-HSD 1-14), and certain 17β-HSDs have a higher 
propensity to catalyse the reaction in a certain direction; 
for example, 17β-HSD-1 favours reduction, whereas  
17β-HSD-2 favours oxidation (Oduwole et al. 2003, 
Lukacik et al. 2006). 17β-HSDs play an important role 
in hormone-sensitive cancers. Increased expression of 
17β-HSD-1 in breast cancers of post-menopausal women 
helps maintain high intra-tumoural E2 levels (Lukacik 
et  al. 2006). Moreover, expression of 17β-HSD-2 and  
17β-HSD-3 mRNA is significantly higher in malignant 
prostatic tissues compared with normal prostate tissues 
(Day et al. 2013), with one study reporting prostate cancer 
biopsies showing 30-fold higher mRNA expression than 
normal. In addition to converting androstenedione to 
testosterone, 17β-HSD-5 can convert E1 to E2. Inhibitors 
of 17β-HSD-5 have been explored in castration-resistant 
prostate cancer and breast cancer; in the latter, androgens 
are not considered to play an important role (Adeniji 
et al. 2013). The study found no appreciable decrease in 
E2 synthesis in breast cancer cell lines when treated with 
a 17β-HSD-5 inhibitor and only a moderate decrease in 
E2 synthesis in some subpopulations of prostate cancer 
cell lines. Interestingly, inflammation associated with 
tumours modulates the expression of 17β-HSD-2 and  
17β-HSD-5 (and also 3β-HSD). Treatment of prostate 
cancer stromal cell lines PrSC with TGFβ1 showed 
a marked downregulation in mRNA expression of  
17β-HSD-2 and 17β-HSD-5 in a dose-dependent manner 
(Piao et al. 2013). The counterintuitive action of TGFβ1 
again demonstrates how little is understood about 
oestrogenic pathways in prostate cancer. Regardless of 
the mechanisms by which oestrogens become available 
within the prostate gland, tumour-promoting or tumour-
suppressing effects must be mediated by activation of 
oestrogen receptors (ER).

http://dx.doi.org/10.1530/ERC-16-0118
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Oestrogen receptors (ER) in the prostate

The effects of oestrogens on tissues are mediated via 
activation of oestrogen receptors (ERs). There are two  
well-studied ERs: ER alpha (ERα) and ER beta (ERβ), 
encoded by two separate genes ESR1 and ESR2, respectively.  
ERα and ERβ are members of the nuclear receptor 
superfamily (Robinson-Rechavi et al. 2003). When bound 
and activated, ERs interact directly with the genome 
acting as transcription factors (or activating transcription 
factors) which act directly on oestrogen response elements 
(Deblois & Giguere 2013). As well as by E2, ERs can be 
stimulated by phytoestrogens, and different classes of 
phytoestrogens have selected preferences for each type 
of ER. In general, phytoestrogens show agonistic activity 
towards ERβ at lower concentrations than towards  
ERα using hamster uterine cells (Takeuchi et al. 2009). 
When human cells are examined, the relative binding 
affinity (RBA) of genistein to ERβ is approximately 
20–30 times greater than for ERα as shown in MCF-7 
breast cancer cell lines (Pilšáková et  al. 2010). The 
affinity of phytoestrogens for ER widely varies with most 
molecules having an RBA to ERβ 1000-fold lower than E2. 
However, molecules such as genistein and coumesterol 
have an RBA 100-fold lower than E2. Genistein and 
coumesterol are able to activate transcriptional factors of  
ERα and ERβ at concentrations of 1–10 nM compared with 
physiological E2 concentrations of 20–40 pM in males 
(Kuiper et al. 1998, Mueller et  al. 2015). Of course, the 
ability of phytoestrogens to bind to ER also depends on 
the existing levels of E1 and E2, as these molecules are 
direct competitors with phytoestrogens.

ERs have been studied more extensively in the context 
of breast cancers, a neoplasm that has been likened as the 
sister disease to prostate cancer, especially in regards to 
their hormonal responses and sensitivities (Risbridger 
et al. 2010). In breast cancer, activation of ERα promotes 
tumour growth as it initiates anti-apoptotic (Razandi et al. 
2000, Chaudhri et al. 2014) and mitogenic effects (Yamnik 
& Holz 2010, Bhatt et al. 2012). This anti-apoptotic effect 
of ERα makes ERα-positive breast cancers more likely to 
metastasise (Ross-Innes et al. 2012). In fact, a review of ERs 
in breast and ovarian cancers has found ERα expression 
correlates with worse prognosis, whereas ERβ expression 
correlates with better clinical outcomes (Burns & Korach 
2012). Generally, ERα activation promotes proliferative 
pathways, whereas ERβ activation leads to apoptotic 
pathways (Acconcia et al. 2005).

Expression of ERα and ERβ in the normal prostate has 
been determined, as the role of oestrogens in prostatic 

development was identified (Ho 2004). Recently, it has 
been reported that prostate progenitor stem cells, while 
lacking expression of androgen receptor, express ER 
abundantly. Indeed, the expression of ERβ is putatively 
6-fold greater and ERα is 125-fold greater in progenitor 
cells compared with LNCaP mature cells (Di Zazzo 
et  al. 2016). Although this supports the importance of 
oestrogens in embryonic and neonatal development of 
prostate gland, it has been hypothesised that the lack 
of androgen receptor expression could be an imprint 
which later predisposes to CRPC in the elderly. In non-
cancerous prostate, ERα is predominantly expressed in 
the stromal compartment and ERβ is predominantly 
expressed in basal-epithelial cells. However, in prostate 
cancer, ERα expression is downregulated in stromal 
cells and upregulated in the cancerous epithelial cells.  
ERβ expression is downregulated in epithelial cells as seen 
by immunostaining in human prostate tissue (Yeh et al. 
2014). Indeed, there is evidence that downregulation of 
ERβ promotes activation of NF-κB mediated by hypoxia-
inducible factor 1 (HIF-1). In immortalised normal prostate 
epithelial cell line PNT1a, loss of ERβ using shRNA showed 
an increase in NF-κB mRNA expression and activity. This 
mirrors what is seen in high-grade, late-stage prostate 
cancer (Mak et al. 2015). Consequently, it appears that an 
increase in ERα expression and decrease in ERβ expression 
is what shifts the balance between protective effects of 
oestrogens and proliferative effects of oestrogens as has 
been suggested in other cancers (Barzi et al. 2013, Burns & 
Korach 2012). Figure 3 summarises the difference in ERα 
and ERβ expression between non-cancerous and cancerous 
prostate tissue. Single nucleotide polymorphisms (SNPs) 
in the ER genes have been investigated and associations 
have been made between certain polymorphisms and the 
risk of prostate cancer (Holt et al. 2013, Jurečeková et al. 
2015). In both studies, the genomes from histologically 
confirmed human prostate cancer samples were analysed 
using polymerase chain reaction restriction fragment 
length polymorphism (PCR-RFLP)-based analysis and 
compared with age-matched healthy control subjects.  
A meta-analysis exploring the results of 24 published  
studies that include Caucasian, Asian and African 
participants concluded that ESR1 rs9340799 
polymorphism is allied to increased risk in the general 
population of Caucasians and Africans, whereas ESR2 
rs1256049 polymorphism has been linked to increased 
risk only in Caucasians (Fu et al. 2014).

Research into ERβ has been more extensive than 
in ERα. McPherson and coworkers (2007) highlighted 
the potential significance of ERβ manipulation when 
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they treated prostate hyperplasia in oestrogen-depleted 
mice with a selective ERβ agonist and found it to induce 
apoptosis and shrink the size of the prostate. Hussain 
and coworkers (2012) carried forward this research, and 
initial studies have found ERβ agonist treatment with  
8β-VE2 can induce apoptosis in primary human and 
murine prostatic basal cells, a lineage considered to be the 
cells of origin for prostate cancers (Taylor et al. 2012). The 
mechanism behind how ERβ activation induces apoptosis 
in prostate cancer cells lines may be via upregulation of 
p53-upregulated modulator of apoptosis (PUMA) and 
consequent intrinsic caspase-9 mechanisms. Dey and 
coworkers overexpressed ERβ in LNCaP, PC3 and 22Rv1 
prostate cancer cell lines in vitro, the latter does not 
express ERβ, and treated with E2 and agonist 3β-adiol. 
Immunofluorescence revealed that cells that expressed 
ERβ were more likely to undergo apoptosis following 
expression of PUMA independent of p53 (Dey et al. 2014). 
It has even been reported that ERβ activation impedes on 
the epithelial–mesenchymal transition process, thereby 
reducing the risk of invasion and metastasis. In human 
tissue samples and LNCaP and PC3 cell lines, treatment 
with E2 and high concentration of ERβ1 agonist 3β-adiol 
resulted in inhibition of VEGF and destabilisation of HIF-1 
in vitro, thus suppressing the factors that drive epithelial–
mesenchymal transition necessary for metastasis. 
Furthermore, loss of ERβ1 expression by means of shRNA 
transfection resulted in a significant increase in migration 
and invasion (Mak et al. 2010). Mounting evidence also 

suggests that pharmaceutical targeting of ERβ pathways 
may be effective in treating prostate cancer. However, 
recently, a ‘switching roles’ theory has been proposed 
suggesting that the effects of ERβ activation switches from 
protective to proliferative as cancer progresses (Savoy & 
Ghosh 2013). The theory is based on the observation 
that castration-resistant prostate cancers have higher 
expression of ERβ compared with hormone-naïve prostate 
cancers. It is possible that decreased levels of circulating 
androgens and upregulation of androgen receptors may be 
important in this switch; however, the actual mechanisms 
and processes are yet unknown.

Splice variants of ERβ are also important, as it has been 
shown that at least five different isoforms exist, many of 
which are expressed in the prostate (Leung et al. 2006). 
Activation of different isoforms may have opposing effects; 
for example, ERβ1 is tumour-suppressing, whereas ERβ2 is 
tumour-promoting in LNCaP cells (Chen et al. 2009). In a 
study of primary prostate cancer samples from 144 patients 
who underwent radical prostatectomy, two particular 
isoforms ERβ2 and ERβ5 have been identified to promote 
invasion and metastasis of prostate cancer and thus 
correlate with worse outcomes, while others continue to be 
studied (Leung et al. 2010, Nelson et al. 2014). Certain ERβ 
isoforms, such as ERβ2 and ERβ3, when activated interact 
with transcription factors which enable and promote the 
epithelial–mesenchymal transition and hence might be 
why advanced prostate cancers have higher expression 
of ERβ (Leung et  al. 2010). More research needs to be 

Figure 3
The expression of ERα and ERβ changes during prostate cancer progression. During development of prostate cancer, the ERβ isoform is downregulated in 
epithelial cells. On the other hand, ERα is upregulated in tumour cells as well as the surrounding environment. The remainder of the ‘normal’ prostate 
retains its existing expression of ERα and Erβ. A full colour version of this figure is available at http://dx.doi.org/10.1530/ERC-16-0118.
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carried out to understand the mechanisms of the complex 
downstream pathways of ERβ activation in prostate cancer.

The tumour-promoting effects of ERα within the 
prostate are not as well defined. ERα is expressed in 
significant quantities in the stromal tissue of prostate 
cancer, where they have been associated with cancer-
associated fibroblasts (CAFs) (Slavin et al. 2014). Da and 
coworkers isolated CAF from adenocarcinoma of mouse 
prostate lentivirally transduced with ERα. Conditioned 
media from ERα+CAF promoted proliferation of LNCaP, 
PC3, C4-2 and 22Rv1 cells. Furthermore, in xenograft 
experiments, mice co-implanted with ERα+CAF showed 
a higher growth rate of tumour mass compared with 
injection of prostate cancer cell lines alone (Da et al. 
2015). Activation of ERα on CAFs stimulates the release of 
tumour-promoting factors, which act on prostate epithelia 
in a paracrine manner. Slug (SNAI2), a transcription factor 

with anti-apoptotic pathways, can repress ERα expression 
by binding to gene promotor regions and consequently 
promote epithelial–mesenchymal transition in prostate 
cancer cells and human breast cancer samples (Li et  al. 
2015a). In contrast, downstream pathways of ERα 
activation can inhibit metastasis by downregulating the 
expression of matrix metalloproteinase 3 and upregulating 
the expression of thrombospondin 2 as seen in a range 
of breast cancer cell lines and LNCaP cells; however, this 
is not evident in primary human prostate tissue (Li et al. 
2015a). This may be an effect of ERα activation, which 
diverts cell resources towards growth of prostate cancer 
rather than spread and invasion (Hanahan & Weinberg 
2011). A study investigating the role of ERα in prostate 
cancers of PTEN-deficient mice has shown that the 
expression of ERα correlates strongly with the expression 
of Ki67, a proliferative marker. In addition, inhibition and 

Figure 4
Signalling pathways in prostate cancer through ERα, ERβ and GPER. ERα and ERβ bind to the oestrogen response elements (EREs) of DNA and regulate 
transcription. Activation of ERα induces mitogenic pathways via PI3K which in turn promotes HIF-1α which activates anti-apoptotic pathways, whereas 
activation of ERβ induces apoptosis, cell cycle arrest and inhibits dedifferentiation pathways. GPER activation in prostate cancer is anti-tumourigenic as it 
upregulates p21 and induces cell cycle arrest. A full colour version of this figure is available at http://dx.doi.org/10.1530/ERC-16-0118.
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knockdown of ERα decreases proliferation, but has no 
effect on cell viability; thus, the tumour mass remained 
static. This further demonstrates that ERα regulates  
cell proliferation through PI3K and MAPK signalling 
(Takizawa et al. 2015).

Human trials in 1590 men with high-grade intra-
epithelial neoplasia of the prostate has shown no significant 
decrease in the risk of prostate cancer when treated with 
daily toremifene, a selective oestrogen receptor modulator 
(SERM) used for the treatment of metastatic breast cancer, 
compared with placebo. Of the 1467 men who underwent 
a biopsy during the 3-year study, cancer was detected in 
34.7% in the placebo group compared with 32.3% in the 
treatment group (P = 0.39) (Taneja et al. 2013). Conversely, 
experimental use of toremifene, in cell lines and nude 
mice models, have suggested that ERα antagonists can 
repress the tumorigenicity of prostate cancer (Hariri 
et al. 2015). Intriguingly, there is recent evidence that 
abiraterone, used frequently in advanced prostate cancer, 
is able to activate ER. Capper et al. (2016) demonstrated 
an increase in proliferation of MCF-7 and T47D breast 
cancer cell lines when treated with abiraterone. The 
proliferative effects were diminished when the cells were 
treated with ER antagonist ICI 182,78 (Capper et al. 2016). 
ER-mediated progression of prostate cancer might thus 
constitute a novel mechanism of resistance to abiraterone 
that warrants further investigation. The signalling 
mechanisms of ERα and ERβ are summarised in Fig. 4.

In addition to the two nuclear ERs, ERα and ERβ, 
another relatively recently discovered ER exists. G-protein-
coupled oestrogen receptor (GPER), alternatively known 
as GPR30, is a membrane-bound receptor discovered 
in 1998 (O’Dowd et al. 1998). GPER is found in 50% of 
breast cancers and is believed to be critically involved 
in how Tamoxifen (a SERM) resistance is developed 
(Mo et al. 2013). Tamoxifen can bind and stimulate 
GPER in breast cancer (Prossnitz et al. 2008a) activating 
downstream cancer-promoting pathways. GPER has also 
been shown to be expressed in various hormone-sensitive 
tissues in the body including the prostate (Prossnitz et al. 
2007, Prins & Hu 2013) and has very similar affinity 
for E2 as ERα and ERβ with almost no interaction with 
androgens or glucocorticoids (Prossnitz et al. 2008b). In 
addition to being activated by endogenous E2, GPER can 
also be activated by phytoestrogens with similar RBA as 
phytoestrogens have to ERβ and can elicit an oestrogenic 
signalling pathways (Thomas & Dong 2006).

Evidence of changes in GPER expression within 
prostate cancer is scarce, though it has been established 
with immunofluorescence and immunoblotting that 

GPER is expressed in LNCaP, DU145 and PC3 cells, which 
have varying degrees of invasiveness (Maier et al. 2006). 
In addition, expression of GPER has been identified 
by immunohistochemistry and immunoblotting in 
prostate adenocarcinomas and in pre-neoplastic lesions 
in 50 patients with confirmed prostate cancer of varying 
grades of aggressiveness and in 5 patients with benign 
prostatic disease (Rago et al. 2016). Naturally, more 
research has been conducted in aggressive cell lines 
and primary tissues. In contrast to the effects of GPER 
activation in breast and ovarian cancers, where it promotes 
growth, it has been identified that the treatment of 
castration-resistant prostate cancer with a specific GPER 
agonist, G1, actually inhibits the growth of prostate 
cancer in PC-3, DU145 and LNCaP cell lines in vitro and 
in vivo PC3 xenografts (Chan et al. 2010, Lam et al. 2014). 
While most studies only reported tumour inhibition in 
castration-resistant cell lines, Lam and coworkers found 
that G1 treatment has no effect on androgen-sensitive 
LNCaP cells in vitro and in vivo xenograft mouse models, 
whereas it had a significant effect on castration-resistant 
tumours without apparent toxicity to the host (Lam et al. 
2014). Furthermore, GPER expression is significantly 
increased in androgen-deprived environments compared 
with androgen-replete milieus (Prins & Hu 2013) with 
increased GPER expression also evident in cells isolated 
from distant metastases in patients with CRPC compared 
with tissue from primary prostate cancers (Lam et  al. 
2014). Androgen receptor activation downregulates 
GPER expression, thus explaining why expression of 

Figure 5
The altered expression of ERs during prostate cancer development. 
Changes in ERα and ERβ have been studied throughout the evolution of 
prostate cancer; however, expression of GPER in normal prostate and 
early stages of prostate cancer is currently unknown. A full colour version 
of this figure is available at http://dx.doi.org/10.1530/ERC-16-0118.
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GPER is greater in androgen-deprived environments 
(Lam et al. 2014). The mechanisms by which the GPER 
agonist G1 has anti-tumour effects has been explored 
in PC3 cell line in vitro and in vivo xenograft-castrated 
mice models and is reported to be via upregulation of 
p21 and consequent cell cycle arrest at G2 phase (Chan 
et al. 2010). Although GPER activation inhibits growth 
of prostate cancer, it increases proliferation of other 
tissues including testicular germ cells and urothelial cells 
of the bladder and urinary tract (Chevalier et al. 2011, 
Huang et al. 2015). The fact that GPER activation can 
have opposing effects in different tissues through the 
same pathway illustrates the complexity of intracellular 
oestrogen signalling. Figure 4 grossly summarises GPER 
signalling pathways that have thus far been identified in 
prostate cancer.

Conclusion

This review has presented evidence that suggests an 
imbalance of circulating oestrogens and androgens may 
be responsible for changes to the development and 
progression of prostate cancer. In addition to endogenous 
oestrogen availability, exposure to exogenous oestrogens 
in the form of phytoestrogens may also have a profound 
effect. However, there is substantial evidence that intra-
tumoural synthesis of oestrogens, and indeed androgens, 
plays a significant role, as the prostate is endowed with 
the ability to express key enzymes required for oestrogen 
synthesis. There is a relationship between stage of disease 
and level of expression of these enzymes, as is evident 
from the emergence of resistance to anti-androgen 
therapy further supports this hypothesis.

Changes in the expression pattern of ERα and ERβ 
greatly affect whether oestrogens are tumour promoting 
or tumour suppressing. In normal prostate and during 
early stages of prostate cancer where ERβ is the prominent 
ER, oestrogens may be beneficial as ERβ activation initiates 
apoptotic pathways. Perhaps this is why a lifetime 
of increased phytoestrogen consumption can reduce 
the risk of prostate cancer development. In late-stage 
prostate cancer where ERα is the dominating ER within 
the prostate, oestrogens are deleterious as ERα activation 
regulates cell proliferation through PI3K and MAPK 
signalling. Activation of GPER inhibits growth of prostate 
cancer; however, GPER is not uniformly expressed in all 
prostate cancer, and thus, any GPER-targeted therapy will 
be of benefit to a limited number of patients. Figure  5 
summarises how the expression of ERs change during the 
progression of prostate cancer.

Before any definitive conclusions can be drawn 
over whether oestrogens are good or bad for prostate 
cancer, further research has to be conducted exploring 
the signalling pathways of ER within prostate tissue. In 
addition, an understanding of the mechanisms behind 
abiraterone (Romanel et al. 2015) and enzalutamide 
resistance (Claessens et al. 2014), and whether this is 
linked to altered androgen and oestrogen metabolism, 
will be required before the next big step is taken towards 
development of endocrine therapy for prostate cancer.
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